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ABSTRACT 

 

Phonetic variability is one of the primary challenges in short 

duration speaker verification. This paper proposes a novel method 

that modifies the standard normal distribution prior in the total 

variability model to use a mixture of Gaussians as the prior 

distribution. The proposed speaker-phonetic vectors are then 

estimated from the posterior probability of latent variables, and 

each vector has a phonetic meaning. Unlike the standard total 

variability model, the proposed method can incorporate a phoneme 

classifier to perform soft content matching, which has the potential 

to solve the phonetic variability problem. Parameter estimation and 

scoring formulae for speaker-phonetic vectors method are 

presented. Experimental results obtained using NIST 2010 data 

show that the proposed technique leads to relative improvements of 

more than 30% when fused with total variability model and tested 

on 3 second duration test files. 

Index Terms— automatic speaker verification, short duration 

speaker verification, i-vector, phonetic variability, speaker-

phonetic vector 

 

1. INTRODUCTION 

 
Most state-of-the-art text-independent speaker verification systems 

are comprised of i-vectors, which model speaker and channel 

variability with a low-dimensional representation of speech 

utterances [1]. These are combined with probabilistic linear 

discriminant analysis (PLDA), which serves as the back-end to the 

speaker verification system [2]. Text-independent speaker 

verification systems conventionally require long enrolment 

utterances and operate on long test utterances (2-3 minutes). In 

practical applications, short duration speaker verification is more 

desirable. It should be noted that it is reasonable to assume that 

long utterances can be used for enrolment purposes, since this is 

carried out only once and in an offline manner. Discussion in this 

paper is therefore confined to a scenario of long enrolment and 

short test utterances.  

In recent years there has been increasing interest in short 

duration text-independent speaker verification systems. Duration 

compensation in an i-vector framework is major idea for short 

duration speaker verification. For example, twin model Gaussian-

PLDA (GPLDA) has been proposed to compensate for the duration 

mismatch between i-vectors of  long enrolment and short test 

utterances [3]. The covariance of the i-vector posterior probability 

was integrated into the PLDA model in [4-6]. Score domain 

compensation for duration mismatch using a quality measure 

function (QMF), which takes durations of enrolment and test 

utterances into account, was introduced in [7]. The mismatch 

between long training and short test duration was compensated for, 

in the training phase for the total variability matrix and hyper-

parameters of PLDA, by adding short utterances [8]. A latent 

variable space that has less duration variability has been proposed 

to compensate duration variability and much better performance 

has been obtained [9]. These techniques are proposed under the 

fact that i-vectors from long and short utterances do not have the 

same distribution, and techniques are proposed to compensate this 

mismatch. Mismatch between long and short utterances arises 

primarily from the varying amounts of information in those 

utterances. However, the total variability model in i-vector 

framework is trained on long utterances, and therefore will 

contributes to the mismatch in i-vector space when enrolment and 

test utterance are in different lengths. To relieve this problem, a 

content aware local vector has been proposed [10].  Although 

different senones have been clustered agglomeratively in this 

method, it does not take into account the fact that different clusters 

may overlap. In [11], informative prior knowledge is used to 

compensate for channel variability, but the prior assumption is still 

a Gaussian distribution. Though a Gaussian mixture model (GMM) 

was incorporated into i-vector extraction for language 

identification in [12], it has no phonetic meaning and thus class 

assignments may not be accurate. Most importantly, this method 

was not fully mathematically developed. 

In this paper, we aim to revise the i-vector extraction procedure 

to have speaker-phonetic vector representations for short duration 

utterances. The idea is to relax the standard normal distribution 

prior in the total variability model to a mixture of Gaussians. This 

idea has not been explored for short duration speaker verification. 

In this paper, we show that the total variability model with a 

standard normal distribution is not accurate for short duration 

utterances. More accurate models for short duration utterances and 

better performance can be obtained using a mixture of Gaussians 

as the prior distribution. In order to do this, a DNN trained for 

automatic speech recognition (ASR), e.g., a phoneme classifier, 

can be incorporated into the system. The mathematical 

development of this algorithm as well as the scoring function is 

presented herein. 

2. PHONETIC VARIABILITY IN I-VECTORS 

 

2.1. Total variability model 
Let   be a supervector obtained by concatenating the mean vectors 

of all components of a Gaussian mixture model (GMM). The i-
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vector corresponding to   is given by the well-established total 

variability model as follows: 

        (1) 

where,    is the supervector corresponding to the universal 

background model (UBM),    is the total variability matrix of a 

low rank   (e.g 400), and   denotes latent variables that follow a 

normal distribution. The i-vector is the expected value of the latent 

variables   and is given by: 
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where,    is the     dimensional sub-matrix of    corresponding 

to the     Gaussian mixture component of the UBM,   is the 

number of components in the UBM and   is the dimensionality of 

the feature space.    is the covariance of the     component of  

UBM and    and    are the zeroth and first order statistics of     

component for a given utterance respectively.  

2.2. Phonetic i-vector analysis 

An underlying assumption of the total variability model is that i-

vectors estimated from the same speaker should be clustered into 

the same group and that the contents will be essentially normalized 

by the long duration of the utterances. It is argued in [12] that the 

hypothesized standard normal prior on i-vectors only serves as 

check on the magnitude of the obtained i-vectors. It does not 

promote any form of clustering for i-vectors to be estimated from 

the data. We argue that i-vectors estimated from long utterances 

are more likely to be clustered together for a given speaker because 

the relative frequency of occurrences of different phonemes are 

more likely to be consistent, while short duration utterances are not. 

I-vectors of shorter utterances are more sensitive than those from 

long utterances. This adds weight to the suggestion that i-vectors 

from short duration have larger within-class variation.  

To support this argument, i-vectors of different phonemes from 

different utterances are collected together using a phoneme 

decoder. Frames that are recognized as the same phonetic class for 

a given utterance are grouped together to estimate the 

corresponding i-vector. Those i-vectors are then projected into 

two-dimensional space by principle component analysis (PCA). 

Figure 1 shows the result of this analysis. 304 utterances randomly 

selected from background databases are used. It is clear that 

different groups of phonemes have different distributions and 

supports, that an i-vector is not phonetically invariant and that the 

output of the total variability model is not simply speaker 

discriminative information. In this case, a mixture of Gaussians 

should model the phonetic i-vectors more accurately compared to a 

single Gaussian. In total variability model, this would not be a 

problem for long duration utterances as the amount of information 

is sufficient and the statistical patterns for each group are relatively 

stable [13]. The extracted i-vector will not be biased toward a 

particular group and the within-class covariance does not increase. 

However, for short durations, the amount of information in each 

group is not statistically consistent. This will make the extracted i-

vector biased toward some dominant groups and differ from one to 

another, resulting in larger within-class covariance. Consequently, 

in the long enrolment and short test situation, mismatch in terms of 

within-class covariance is introduced. 

 

3. PROPOSED SPEAKER-PHONEITC VECTOR 

 
From Section 2, i-vectors of different phonetic groups will be 

mapped into the same group with different distributions. But the 

total variability model fails to account for this. This is problematic 

for short duration speaker verification. In order to alleviate this 

problem, speaker-phonetic vector is proposed. 

Kenny et al. mentioned that a single Gaussian assumption may 

not be optimal in the case of the eigenvoice model [14]. A prior 

specified with a mixture of Gaussians should be beneficial if a 

large number of speakers is available for training purposes. Based 

on the observations in Section 2, we make the assumption for our 

case that different phonemes will have different priors and that the 

latent variables are generated from different sources. Each source 

has its own prior and each prior bears the full burden of mapping 

phonetic information into different groups. The latent variable 

distribution is a combination of these different groups. The idea 

presented here is similar to independent factor analysis (IFA) [15]. 

However, comparing the two; in IFA, each source is univariate 

while we assume multivariate sources. We specify the posterior 

probability of each source (phoneme) by a phoneme decoder, 

rather than a GMM in IFA. The proposed method is developed in 

the following section. 

3.1. Expectation of latent variables 

The generative equation of the proposed method is the same as (1) 

and is illustrated in Figure 2. Suppose   states are specified in this 

model, similar to [15], and denote one particular state as   . The 

prior is specified by a combination of   Gaussians. This essentially 

means that there are several sources that generate the latent 

variables. In generating the latent variables, which source to 

choose depends on the probability that is generated by the same 

model or a separate model. For example, a separate phoneme 

decoder can be applied to provide this probability.  
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nx
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( )i
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Figure 2: Graphical model of proposed method. The variables are: z - 

labeling variables;   - feature frames;   - means of the supervectors;   - 

latent variable;   - state variables. The indexes are: superscript e – 
utterance index; subscripts c - mixture component in UBM,  k - state index, 

and n - feature frame index. 

In this model, the prior  ( ) is the mixture of Gaussians 

 ( )  ∑  (    ) (  )
 

 (3) 

where  (  ) is the mixture weight. The collective feature frames 

for a given utterance is denoted as vector   (note that the 

Figure 1: Demonstration of phonetic i-vector clustering. 
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superscript denoting utterance   is omitted in this subsection for 

simplicity). The probabilities of the latent variable   given the 

state    given by: 

 (    )   (     ) (4) 

 (  )        (5) 

The conditional likelihood of observed feature frames of one 

utterance given latent variable and state is calculated as [14] 
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where    ∑ (     )(     )
  

   . The likelihood term is  

 ( )  ∑  (    ) (  )
 

 (7) 

where, 

 (    )  ∫ (      ) (    )   ∫ (   ) (    )   

As shown in the graphical model of Figure 2,  (      )  
 (   ), which means that once   is produced, the identity of the 

state   that generated it is no longer relevant [15]. 

Directly optimizing the likelihood term  ( ) is hard to do as 

latent variables will be inside the logarithm. Thus, the expectation-

maximization (EM) algorithm is used. 

To this end, the auxiliary function of the EM algorithm is 

 (      )  ∫ (        )   [ (   ) ( )]   (8) 

where   denotes the collected latent variables including  ,   and  , 

  denotes the observed features, and      denotes the model hyper-

parameters from the previous iteration of the EM algorithm. The 

value of   is regarded as a lower bound of the log-likelihood of 

observable data. It will increase with every iteration, leading to a 

local optimum of parameters. 

As the alignment of observed data to state    is not intended to 

be changed in this paper, the posterior probability to be estimated 

is 

 (   )  ∑ (  ) (      )

 

 (9) 

where 

 (      )   (      ) (    ) (  ) (10) 

The three terms on the right-hand side of (10) are given by 

equations (4), (5) and (6). 

The posterior probability given the state and observed data is 

still a Gaussian. After some algebraic manipulations, the first and 

second moments of the latent variables given the state and 

observed data are calculated as, 

   (      )  (  
          )   (11) 

 [      ]     (      )( 
        

    ) (12) 

 [        ]     (      )   [      ] [ 
      ] (13) 

where   is the stacked form of   , the same   and   are used as in 

[14], and    ( )  and  [ ]  are the covariance and expectation 

operator respectively. 

     According to [15], the following equation holds 

 [ ( )  ]  ∑  (    ) [ ( )     ]
 

 (14) 

Taking  ( )    or    , it is straightforward to calculate the 

expectations of latent variables given the observed data. 

3.2. Parameter estimation 

The   matrix training procedure is different to the one commonly 

used in [14] in how to estimate the posterior probabilities of latent 

variable. 

The labelling variable   can be omitted as it will not change 

across the training and inference stages. Starting from (8), the 

auxiliary function is written as 

 (      )

 ∑∫ (      )   [ (      ) (    )]  

 

 ∑ (    )∫ (      )   [ (   ) (    ) (  )]  

 

 

(15) 

where  (   ) is the posterior probabilities of state given observed 

data. As the   matrix is the only parameter that needs to be 

estimated and it is only included in  (     )  and  (   ) , to 

optimize (15) is equivalent to optimize, 

 ̂(      )  ∑ (    )∫ (      )   [ (   )]  
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Add the utterance subscript  , 

 ̂(      )

 ∑∑ (     ) [   [ (     )]] (             )
  

 (17) 

After some algebraic manipulations, the auxiliary function can 

be expressed as 

 ̃(      )  ∑∑ (     )  ( 
  (   [  

       ] 
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(18) 

Setting the gradient of the expression regarding parameter   to 

0, the following updating scheme can be obtained: 

       (19) 

where 

  ∑∑ (     ) [        ]  
  

 (20) 

  ∑∑ (     )   [    
       ]

  

  (21) 

3.3. Scoring Method 

In this method, the posterior probability of the latent variable will 

be a mixture of Gaussians, which means that one utterance can be 
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represented by a number of vectors based on the proposed model. 

A bank of GPLDAs is then estimated to obtain scores for each 

phonetic vector. The final score is then calculated by the formula, 

     (     )  ∑       (       )

 

 (22) 

where        ∑      ,    is the zeroth-order statistics of state 

  and      (       ) is the GPLDA score for a single phonetic 

class. The weighted average considers the relative amount of 

information in each phonetic group, which is expected to be 

beneficial for short duration speaker verification. 

3.4. Underlying meaning of Mixture of Gaussians prior 

From the previous sections, the posterior probability of the latent 

variables is mixture of Gaussians. Thus, relaxing the prior of    

from (1) to a mixture of Gaussians means that the supervector   

must also be a mixture of Gaussians. 

The rationale behind the relaxation in this paper is that one 

utterance will be represented by a weighted combination of several 

supervectors with phonetic meaning. They are expected to have 

different distributions thus different priors are used to group 

phonetic and speaker discriminative information. Short duration 

utterances have unstable phonetic statistics, and weights used to 

combine phonetic supervectors provided by these phoneme 

statistics have the potential to account for uncertainty in each 

group. This mechanism should be beneficial for short duration 

utterances as it potentially performs content matching. What is 

more, each utterance is no longer represented by a single i-vector, 

rather by a number of phonetic grouped vectors that we name the 

speaker-phonetic vectors. The uncertainty within each group is 

considered in the scoring stage. 

4. EXPERIMENTS AND RESULTS 
 

A number of experiments were conducted to analyse the 

effectiveness of the proposed method. The 8CONV-10SEC 

condition of the NIST SRE’10 database [16] was chosen for these 

experiments along with the 8CONV-5SEC and 8CONV-3SEC 

conditions where test utterances are truncated to 5 and 3 seconds. 

The baseline system is an i-vector/G-PLDA system. Standard 13-

dimensional MFCC features and their first and second derivatives 

were used in conjunction with a vector quantization model based 

voice activity detector [17] prior to feature warping [18]. Gender-

dependent UBMs of 1024 Gaussian mixtures were created using 

utterances from the NIST SRE’04, 05, 06, 08, Switchboard II Part 

1, 2, 3 and Switchboard Cellular Part 1 and 2 databases, which 

serve as background databases. One utterance was chosen from 

each speaker’s available data to retain speaker diversity while 

reducing the overall data [19].   matrices of rank 400 were 

estimated using the MSR Toolbox [20]. Linear discriminant 

analysis was then applied to further reduce the dimension to 200. 

The i-vectors were then radially Gaussianised followed by length 

normalization as described in [21]. The dimensionality of the 

speaker factors in the baseline is set to 200. For the proposed 

method, identical MFCC features and UBMs were used. Identical 

development, training and test sets were employed for the baseline 

and proposed systems.  

The BUT group’s phoneme decoder of Hungarian language  

[22] is used to obtain phonetic posterior probabilities in this paper. 

To further simplify the system, similar phonemes (e.g. long and 

short duration phonemes) are clustered together, resulting in 14 

phonetic groups. The corresponding phonetic posterior 

probabilities are then added up. The prior mixture of Gaussians is 

estimated in this paper in the following way. First, a conventional 

total variability model is trained. Second, phonetic based zero- and 

first-order statistics are calculated as     ∑  (    ) (    ) , 

    ∑  (    ) (    )   . Phonetic vectors were estimated 

based on these phonetic statistics. One Gaussian was then assigned 

to each phonetic group to fit the vectors, resulting with 14 

Gaussians. 

Table 1 summarises the performances of the i-vector/G-PLDA 

baseline system and the proposed system when the LDA dimension 

is 200. We can see that the proposed method has better 

performance when the test utterances are shorter, especially in the 

3 seconds condition, where 18.2% relative improvement is 

observed in male condition. This supports the argument that the i-

vector framework adds additional mismatch to the situation of long 

enrolment and short test utterance. The proposed speaker-phonetic 

vectors are able to relieve this mismatch.  

Given that the proposed speaker phonetic vectors have the 

ability to group phonetic local information, which is then expected 

to complement the total variability framework of the baseline i-

vector system, the baseline and the proposed system can be 

expected to be complementary and fuse well. In the experiments 

reported in this paper, we fused systems at the score level. Scores 

from the baseline system and the proposed system were fused 

using the BOSARIS Toolkit [23] and denoted as Fusion1. Based 

on the results it is clear that the two approaches are 

complementary, and the fusion leads to substantial improvements 

for all three different duration conditions, leads to 25.4%, 23.7% 

and 30.1% relative improvement for 10, 5 and 3s respectively in 

male condition. Finally, the baseline was also fused with pre-

proposed acoustic local variability model [13] and denoted as 

Fusion 2. It shows that the proposed method in this paper 

outperformed the acoustic local variability model in both 

individual and fused system. 

Table 1. Performance (equal error rate %) of baseline and 

proposed systems on SRE’10 8CONV-10SEC and additional 5 and 

3 second conditions. 

 Male Female 

 10s 5s 3s 10s 5s 3s 

Baseline 5.12 10.61 17.43 6.16 12.43 18.90 

Proposed 5.34 10.26 14.26 6.68 11.54 16.52 

Fusion1 3.82 8.10 12.19 4.94 8.90 14.15 

SGPLDA 12.34 14.69 17.27 12.18 16.00 18.76 

Fusion2 4.40 8.99 14.06 5.92 11.24 15.31 

 

5. CONCLUSIONS 

 
In this paper, we aim to revise the i-vector extraction procedure to 

have better representations for short utterances. We first find that 

different phonemes in the same utterance (with the same channel 

variability) tend to have different distributions, which makes short 

utterance i-vectors mismatched with those of long utterances. To 

mitigate this mismatch, we propose replacing the Gaussian prior 

with mixture of Gaussians in total variability model and the 

subsequent algorithms for training, inferring and scoring were 

developed. The efficacy of the proposed technique was validated 

on the NIST SRE’10 8CONV-10SEC condition and additional 

shorter duration conditions using truncated 5 and 3 second test 

data. The proposed method is found to be effective for shorter 

duration conditions and fusion with the total variability model 

leads to substantial improvement.  
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