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ABSTRACT

Text-independent speaker recognition (TI-SR) requires a
lengthy enrollment process that involves asking dedicated
time from the user to create a reliable model of their voice.
Seamless enrollment is a highly attractive feature which
refers to the enrollment process that happens in the back-
ground and asks for no dedicated time from the user. One of
the key problems in a fully automated seamless enrollment
process is to determine the sufficiency of a given utterance
collection for the purpose of TI-SR. No known metric exists
in the literature to quantify sufficiency. This paper intro-
duces a novel metric called phoneme-richness score. Quality
of a sufficiency metric can be assessed via its correlation
with the TI-SR performance. Our assessment shows that
phoneme-richness score achieves -0.96 correlation with TI-
SR performance (measured in equal error rate), which is
highly significant, whereas a naive sufficiency metric like
speech duration achieves only -0.68 correlation.

Index Terms— Speaker recognition, text-independent,
seamless enrollment, sufficiency metric, phoneme-richness
metric

1. INTRODUCTION

As speech recognition technology is getting better with the
advances in deep learning techniques, speech is getting closer
to becoming a completely pervasive user interface in the
human-computer interaction landscape. Delivering secure
system interaction becomes an important part of the puzzle
and speaker recognition is a natural fit to deliver secure sys-
tem interaction. Speaker recognition techniques make use
of machine learning to determine the identity of an enrolled
speaker from a segment of speech uttered by them.

Two types of speaker recognition (SR) can be defined in
terms of the constraints on the content of speech required for
recognition. For text-dependent (TD) SR, the words used
to enroll and test should be the same. TD-SR can be used
with wake up phrases and with longer, more phonetically rich
pass-phrases. The enrollment process requires a few repeti-
tions of the same phrase. Text-independent (TI) SR, on the
other hand, aims to recognize speaker identity with no con-
straints on the speech content, which makes it possible to rec-

ognize speakers during natural conversational speech [1]. TI-
SR requires a lengthy enrollment process that involves ask-
ing dedicated time from the user to create a reliable model
of their voice. It is important to capture a persons voice ut-
tering a wide range of different speech content to ensure the
robustness of the resulting speaker model and therefore spe-
cial phoneme-rich passages are often required to be read. In
general, TI-SR requires longer enrollment and test utterances
to achieve the error rates TD-SR achieves.

Usability of TI-SR can be greatly improved by a system
design that offers a seamless enrollment process where data
collection for enrollment happens in the background. [2] dis-
cusses a seamless enrollment system where face recognition
and lip reading detection are used to determine when a target
speaker is talking, while capturing speech in the background
for the purpose of TI-SR training.

When the enrollment process is not controlled by asking a
phoneme-rich passage to be read, one requires a metric to an-
alyze the value of an utterance pool with respect to its ability
to inform the speaker model training process to create robust
speaker models. No known metric exists in the literature for
quantifying the value/sufficiency of an utterance pool for the
purpose of TI-SR enrollment. In addition to making seamless
enrollment more robust, sufficiency metrics provide useful in-
formation to improve traditional TI-SR enrollment and iden-
tification/verification processes. An SR system may utilize
sufficiency metrics to determine optimal enrollment durations
in order to achieve target accuracies. Sufficiency metrics can
be utilized in confidence quantification for multi-session en-
rollment [3] and model fusion [4, 5]. Sufficiency metrics can
also be used during verification/identification for confidence
modeling. A higher sufficiency score over a test utterance
may indicate a lower expected error rate and therefore higher
confidence in the system decision.

This paper introduces a novel sufficiency metric called
phoneme-richness score. Quality of a sufficiency metric can
be assessed via its correlation with the TI-SR performance.
Our assessment shows that phoneme-richness score achieves
-0.96 correlation with TI-SR performance, which is highly
significant, whereas a naive sufficiency criteria like speech
duration achieves only -0.68 correlation.

Literature exists on analyzing the quality of a speech sig-
nal in terms of distortions due to channel effects and envi-
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ronmental noise. Quality measures include noise classifica-
tion, signal to noise ratio, and universal background model
(UBM) score [6]. [7, 8, 9, 10, 6, 11] describe ways to define
such quality measures and utilize them to improve the robust-
ness and performance of speaker recognition. These qual-
ity measures mainly focus on quantifying the cleanliness of a
speech signal from distortions, rather than sufficiency of a set
of speech signals for the purpose of robust text-independent
enrollment. Although phoneme-richness score can also be
utilized as a speech quality metric, this paper mainly focuses
on its use as a sufficiency metric for robust text-independent
enrollment. In Section 2, we briefly describe a high-level sys-
tem design for a seamless enrollment process to show where
sufficiency quantification fits in the big picture. In Section 3,
we explain how we define phoneme-richness score. In Sec-
tion 4, we present the details of our experiments to showcase
the utility of phoneme-richness score as a sufficiency metric
for robust text-independent enrollment. We conclude with a
summary in Section 5.

2. SEAMLESS ENROLLMENT FOR
TEXT-INDEPENDENT SPEAKER RECOGNITION

In this section, we will briefly cover the high-level flow of the
seamless enrollment process, given in Figure 1. This design
for seamless enrollment for TI-SR requires that there exists
at least one other tool in the system to predict speaker iden-
tity during data collection process for TI-SR enrollment. One
can use the wake up phrase and apply text-dependent SR to
predict speaker identity. Other biometrics on face, iris, body,
wearable sensors, etc. can be used for identity detection. [2]
uses face recognition and lip reading detection to determine
speaker identity in their design.

In this design, data collection is assumed to happen con-
tinuously with an always on device (like Amazon Echo or
Google Home) and the data is properly tagged and stored in
an utterance pool. The utterance pool is processed at certain
time intervals with the aim of either adopting/updating an al-
ready created text-independent speaker model or creating a
new speaker model. All the utterances collected from a target
speaker is subjected to a process called sufficiency quantifica-
tion. The aim of this process is to determine the value of an
utterance pool for the purpose of TI-SR enrollment. A suffi-
ciency metric can be based on quantifying diversity, quantity,
and predictive quality. Multiple sufficiency metrics may be
combined to make a stronger metric. Diversity in the con-
text of speech is defined in terms of phoneme diversity and
will be referred as phoneme-richness. A direct way to quan-
tify phoneme-richness is to use phoneme predictors that are
utilized in speech recognition. In the rest of the paper, we
will discuss how we defined phoneme-richness independent
of phoneme predictors, utilizing a Gaussian mixture model
(GMM).
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Fig. 1. Seamless enrollment/adaptation flow

3. PHONEME-RICHNESS QUANTIFICATION

We extract 26 log mel-filterbank energies as features from
overlapping windows with length 25 msec and overlap
amount of 10 msec. The FFT size was 512 and we applied
preemphasis filter with 0.97 preemph. We train a 256-mixture
GMM that we call the Universal Background Model (UBM),
using the train portion of the TIMIT dataset [12], which con-
tains clean voice recordings of 462 speakers, each uttering 10
phoneme-rich sentences (each containing 7-10 words).

Phoneme distribution for a given utterance pool is repre-
sented as a histogram over the highest-scoring Gaussian mix-
ture indices in the UBM. A reference histogram is calculated
using the test portion of the TIMIT dataset. This histogram
represents the ground truth for an adequately phoneme-rich
utterance pool. Test portion of the TIMIT dataset contains
clean voice recordings of 226 speakers, each uttering 10
phoneme-rich sentences, which can be considered an ade-
quately phoneme-rich utterance pool for our purposes. Figure
2 illustrates the offline process where the TIMIT dataset is
used to create the reference histograms. An energy-based
Voice Activity Detection (VAD) technique is used to separate
speech content from the non-speech. Energy is calculated
over an overlapping window with length 25 msec and overlap
amount of 10 msec. Noise floor is calculated per recording by
taking the average energy in the first 10 frames. Noise floor
adjusted energy for each frame is thresholded to identify high
energy frames, which are assumed to contain speech content.
Since TIMIT contains clean recordings with no additional
noise, energy-based VAD is sufficient.

In addition to creating a reference histogram for the
speech content, we create a histogram over the non-speech
content. We only use this histogram to determine the bins
most populated by non-speech content. We then eliminate
these bins in the speech reference histogram so they do not
affect phoneme-richness score calculations. The objective is
to minimize the effect of non-speech content in the creation
of reference speech histogram.

Figure 3 shows the process applied when an utterance
pool in question requires phoneme-richness quantification.
Speech and non-speech histograms are extracted from the
utterance pool in the same way reference histograms are cre-
ated. Normalization is required before calculating distance
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Fig. 2. Reference histogram creation process

between histograms and can be achieved by dividing each
value in the histogram by the sum of the values.
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Fig. 3. Phoneme-richness score calculation process for a
given utterance pool

For distance calculation between a reference histogram
and a histogram representation of an utterance pool, a cus-
tom distance metric is applied. The bins in the utterance
histogram that have a smaller value than the corresponding
bins in the reference histogram are identified. The distance
score is calculated as the sum of the bin value differences for
the identified bins. The objective is to eliminate the effect
of an overrepresented phoneme set in an utterance pool over
the distance score. Distance score only sums up the effect
of underrepresented phoneme sets in an utterance pool. The
distance score is subtracted from 1 to achieve the phoneme-
richness score. This works since range of distance score is
0 to 1. Phoneme-richness score P is calculated using the
equations given below, where reference histogram is denoted
by Href and utterance pool histogram is denoted by Hpool:

Href = hr0, hr1, ..., hrn (1)

Hpool = hp0, hp1, ..., hpn (2)

P = (1−
n∑
i

hri − hpi | hri > hpi) (3)

4. RESULTS

We used a proprietary dataset containing utterances from 40
speakers (gender-balanced), sampled at 16 kHz. Each speaker
uttered 180 short commands with varying lengths, 10 repeats
of 20 trigger words and a phoneme-rich passage. We sepa-
rated 180 short command utterances randomly into 25 batches
to experiment with adding phonetic richness by incrementing
speech data one batch at a time. Each batch contains about
3 seconds of speech duration determined by using an energy-
based VAD. One batch contains on average 5.5 commands.
Each command contains on average 0.5 seconds of speech
content. We devised several enrollment scenarios to show-
case the metric behavior:

• Enrollment with 10 repeats of the trigger word hello
computer (average speech duration: 2.7 seconds)

• Enrollment with 10 repeats of 4 trigger words (average
speech duration: 12 seconds)

• Enrollment with the phoneme rich passage (average
speech duration: 11.8 seconds)

• 1 to 15 utterance batches are used for enrollment. (av-
erage speech duration for each batch: 5.5 seconds)

We used on average 55 short utterances for target trials
per speaker and on average 11 utterances for each imposter
per speaker. For each speaker, all the remaining speakers are
used as imposters. Our cross-validation strategy involved ran-
domizing the batch selection to be used for enrollment and
trial. We conducted 5 experiments for each enrollment sce-
nario with different batches and reported the average equal
error rate (EER) over these experiments.

Table 1. Phoneme-richness score, speech duration and EER
scores associated with select enrollment scenarios

Enrollment scenarios Speech
duration
(secs)

P EER
(%)

10 ”hello computer” repeats 2.72 0.092 38.49
10 repeats of 4 trigger words 12.66 0.132 26.21
Phoneme-rich passage 11.80 0.152 20.85
1 batch 3.01 0.131 24.79
2 batch 6.03 0.143 20.37
3 batch 9.03 0.150 19.03
4 batch 12.02 0.153 17.88
5 batch 15.06 0.154 17.05
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We used an energy-based VAD and GMM-UBM [13]
based TI-SR solution in the experiments. Table 1 shows
phoneme-richness score, speech duration and EER scores
associated with each enrollment scenario for the speaker ver-
ification task. Enrollment with 10 repeats of hello computer
received the lowest phoneme-richness score and the highest
EER. Enrollment with 5 batches of utterances received the
highest phoneme-richness score and the lowest EER. Enroll-
ment with the phoneme-rich passage achieves the same EER
as 2-3 batches of commands, which is about 11 to 16 unique
commands. 10 repeats of 4 trigger words has similar speech
duration on the average with the phoneme-rich passage, but
EER is significantly lower with the enrollment scenario where
a phoneme-rich passage is read.
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Fig. 4. Phoneme-richness score and EER against the number
of utterance batches used for enrollment

Figure 4 shows side by side how phoneme-richness score
and EER changes with increasing number of batches used
in the enrollment. While phoneme-richness score increases,
EER drops from 25% to 15% with the same trend. They both
seem to hit a plateau after approximately 11 batches or 60
short commands.

We define success criteria for a sufficiency metric as the
correlation between the value of this metric over an utter-
ance pool and the EER when the utterance pool in question
is used to create a speaker model. Phoneme-richness met-
ric quality is assessed by Pearsons correlation coefficient be-
tween phoneme-richness score and EER on the given enroll-
ment scenarios. This correlation metric measures the linear
relationship between two datasets. It varies between -1 and
+1 with 0 implying no correlation. Correlations of -1 or +1
imply an exact linear relationship. The 18 phoneme-richness
score and EER values we measured results in a -0.96 corre-
lation score with p-value 2.21 e-10, indicating a very strong
correlation.

One naive way of determining phoneme-richness would
be to look at the total speech duration of an utterance pool.
This approach is naive because it can be easily fooled to
achieve a high sufficiency score by many repeats of the same
command. Table 2 shows the comparison of two approaches
in terms of correlation with EER. Speech duration metric
indicates a much lower correlation with EER compared to
phoneme-richness metric. The p-value indicates the proba-
bility of incorrectly concluding that a correlation exists. The

selection of enrollment scenarios changes the resulting corre-
lation value and therefore correlation values are comparable
only when the same enrollment scenarios are used for com-
parison. In our comparison, we used identical enrollment
scenarios.

Table 2. Sufficiency metric comparison using Pearson corre-
lation with EER success criteria

Sufficiency metrics Correlation
with EER

P-value

Phoneme-richness score -0.96 2.21 e-10
Speech duration -0.68 0.002

5. SUMMARY

In this paper, we introduced a novel metric to quantify
sufficiency of an utterance pool towards training a text-
independent speaker model. For achieving fully automated
seamless enrollment for text-independent speaker recogni-
tion (TI-SR), sufficiency quantification is necessary and no
known method exists in the literature for this purpose. Our
sufficiency metric, phoneme-richness score, utilizes Gaussian
mixture models to model phoneme density for a given lan-
guage. We use correlation between the value of a sufficiency
metric and equal error rate (EER) as success criteria for the
sufficiency quantification method. We calculated EER and
sufficiency score on a number of enrollment scenarios and
found the correlation to be -0.96 for the phoneme-richness
metric indicating a highly significant correlation. On the
other hand, the naive sufficiency metric speech duration had
a -0.68 correlation score.

In addition to making seamless enrollment more robust,
sufficiency metrics provide useful information to improve
traditional TI-SR enrollment and identification/verification
processes. Optimal enrollment durations to achieve target
accuracies can be determined using sufficiency metrics. Con-
fidence quantification in multi-session enrollment [3] and
model fusion [4, 5] is critical and sufficiency score can be
utilized to have an explicit understanding of the quality of
the utterances used for enrollment. Sufficiency metrics can
also be used during verification/identification for confidence
modeling. A higher sufficiency score over a test utterance
may indicate a lower expected error rate and therefore higher
confidence in the system decision.

As future work, other feature spaces can be explored, al-
though the high correlation between the proposed metric and
the TI-SR performance indicates mel-filterbank features con-
tain by far the dominant information for characterizing speak-
ers. Experimenting with low quality data, spontaneous and
noisy speech would be necessary to show how the proposed
method generalizes for these environmental conditions.
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