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ABSTRACT

The detection of overlapping speech segments is of key importance
in speech applications involving analysis of multi-party conversa-
tions. The detection problem is challenging because overlapping
speech segments are typically captured as short speech utterances
far-field microphone recordings. In this paper, we propose detection
of overlap segments using a neural network architecture consisting
of long-short term memory (LSTM) models. The neural network ar-
chitecture learns the presence of overlap in speech by identifying the
spectrotemporal structure of overlapping speech segments. In order
to evaluate the model performance, we perform experiments on sim-
ulated overlapped speech generated from the TIMIT database, and
natural multi-talker conversational speech in the augmented Multi-
party Interaction (AMI) meeting corpus. The proposed approach
yields improvements over a Gaussian mixture model based overlap
detection system. Furthermore, as an application of overlap detec-
tion, integration of overlap detection into speaker diarization task is
shown to give improvement in diarization error rate.

Index Terms— Overlap Detection, LSTM modeling, Speaker
Diarization, Conversational Speech Analysis.

1. INTRODUCTION

Overlap speech segments comprise of speech from more than one
talker (as shown in Fig. 1). Such segments are found in almost every
multi-talker conversational speech setting, such as dialogues, meet-
ings, debates, and broadcast news. As described in [1], overlapped
speech can be demarcated into four types, namely, (a) short feed-
back, no interruption of the speaker, (b) premature turn-taking at the
end of the speakers turn, (c) simultaneous starting after longer si-
lence, and (d) barge-in, aiming to take the turn over.

The presence of overlapped speech segments in recordings ad-
versely impacts speech applications such as automatic speech recog-
nition (ASR), speaker identification and speaker diarization. Pres-
ence of overlap segments in the captured recordings, for instance in
speaker identification, leads to poor modeling of individual speakers
(when used in training), and poor test accuracies (when used in test-
ing) [2, 3]. Accurate detection of overlapping speech segments can
significantly improve analysis of conversational speech recordings.
For example, Shokouhi et al. [4] report improvement in word-count
estimation (in conversational recordings) by providing data pruning
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using overlap detection, and Charlet et al. [5] report improvement in
diarization error rates by excluding overlap speech segments. Over-

overlapped speech segments
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Fig. 1. Tllustration of spectrotemporal structure in a synthetically
generated overlapped speech. Key distinctions are seen in voiced
region overlaps; two different harmonic complexes intermix in these
regions.

lap detection can be approached as a feature design and classification
problem. From the feature design perspective, assuming overlapping
segments contain voicing, harmonicity [6, 7, 8], kurtosis [9, 10] of
short-time segments, LPC residual energy [2], spectral-flatness mea-
sure (SFM) [6], and MFCCs [6, 2] have been explored as useful
features for overlap detection. In spite of these efforts, the perfor-
mance on overlap speech detection tasks is well below acceptable
levels (for example, precision rates of 67% with a recall rate of 34%
reported in [6] on TIMIT corpora [11]).

An attempt to model overlapped speech as a non-linear feature
transformation in the cepstral domain is proposed in [12], and a con-
volution sparse coding approach is proposed in [13]. Apart from us-
ing short-time segments (20 —30 ms), Yella et al. [14] has shown im-
proved overlap detection by augmenting silence and speaker change
statistics computed over 3 — 4 s with short-time features. Inter-
estingly, owing to the four kinds of overlaps in natural conversa-
tions [1], the overlapping segments can be associated with overlaps
of voiced and unvoiced segments, and also speech and non-speech
(such laughter) segments. Further, depending on reverberation, am-
bient noise, and context of the conversation, the energy of the talkers
can be widely different, thereby making single talker to interfering
talker ratio vary drastically in the recording. These aspects make the
task of robust overlap detection in natural conversational recordings
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challenging.

We experiment with two time-frequency representations, namely,
mel-spectrograms and gammatone spectrograms as features, in ad-
dition to the traditionally used features such as SFM, kurtosis and
MFCCs. With these features we develop an overlap detection system
using deep learning architectures. The methods developed provide a
frame-level posterior probability indicating the presence of overlap
speech in the given speech segment. We find that the proposed mod-
eling architectures show significant improvements over the baseline
performance obtained with Gaussian mixture models. Interestingly,
the recurrent modeling methods, with the best performance obtained
using long short term memory networks (LSTMs), are able to extract
representations from the spectrograms that are useful in predicting
overlaps. In a parallel development, on using neural networks for
speech analysis, recently, performance benefits for tasks such as
speech activity detection [15] and speaker change detection [16] has
been obtained.

The main focus of the paper is to improve overlap detection on
conversational speech. For evaluation we use the augmented multi-
party interaction (AMI) meeting corpus [17]. We also experiment
with an artificial overlap dataset constructed with the TIMIT corpus.
[11]. The synthetic dataset is used for data augmentation to improve
performance on the AMI corpus. As an application of overlap detec-
tion on conversation speech analysis, we use the detection system as
a front-end pre-processing method in an i-vector based speaker di-
arization system. We show that integrating the obtained overlap re-
gion annotations provides reduction in diarization error rate (DER).

The organization of the paper is as follows. Sec.2 describes the
dataset used in the experiments. Sec.3 details the approach used
for overlap detection. The results of the various experiments are
presented in Sec.4, followed by a summary in Sec. 5.

2. DATASET

2.1. TIMIT

The TIMIT corpus [11] is composed of 630 speakers, each reading
10 phonetically rich English sentences, and recorded in an anechoic
environment at 16 kHz. We design an overlap speech dataset us-
ing the utterances from the corpus with the following procedure. A
pair is created by choosing two recordings taken from two differ-
ent speakers, and these recordings are superimposed together. The
instant of superimposition is chosen randomly with the constraint
that the instant is prior to the end of the last spoken word in the
first recording. The phoneme level annotations of each recording in
the superimposition are used to obtain the ground truth overlap la-
bels. To simulate real life scenarios, the superimposed recordings are
convolved with the room impulse responses (RIR) of meeting rooms
(drawn from the publicly available Aachen RIR dataset [18] and cor-
rupted at 3-10 dB SNRs levels with 4 kinds of additive noises (meet-
ing, lecture, conference, and hallway; drawn from the DEMAND
database [19]). Training is done on speech files corresponding to
400 speakers and testing on separate 168 speakers. The partitioning
is as given in the dataset.

2.2. AMI

The AMI corpus [17] is a meeting dataset containing close to 100 hrs
of multi-talker conversational meeting recordings. A meeting has at
least three talkers, and there are a total of 171 talkers in the whole
corpus (114 male and 57 female). Each meeting is recorded us-
ing a set of different devices, namely, microphone array composed

of eight single distant microphones, headset and lapel microphones.
We use the first microphone channel (denoted by Array-1) from
the microphone array. In addition, the officially designated train-
ing dataset and validation dataset in the AMI corpus was used for
training and testing, respectively, in the experiments. The training
and testing dataset comprises of 102 and 12 meeting recordings, re-
spectively. The microphone array channel are distant recordings,
and hence contain reverberation and ambient noise, in addition to
the naturally occurring overlapped speech regions. The AMI cor-
pus is annotated by human annotators using the headset recordings
(as these have higher single talker SNR). On analysis of the annota-
tions, 7.9% frames (at 10 ms) of the total spoken speech frames are
composed of overlapped speech. The rest of the recording is either
single talker speech or unlabeled speech/silence. However, on cross-
checking, it was found that some of the annotations have errors. For
example, several regions containing non-speech sounds (like laugh-
ter) are labeled as speech, and several unlabeled regions include sin-
gle, multi-talker speech and large amounts of silence. To rectify the
annotation errors, we do force alignment using a pre-trained auto-
matic speech recognition (ASR) model. The model was pre-trained
on single distant microphone (SDM) files of AMI dataset using the
Kaldi ASR toolkit [20]. The forced alignment resulted in changes
in the annotations at certain segments of the recordings. This had a
significant impact on the ground truth labeling of single and over-
lapped speech segments. For example, close to 40% of the frames
were assigned different labels after force alignment.

3. DETECTING OVERLAP SEGMENTS

3.1. Baseline Approach

As a baseline we use Gaussian mixture models (GMMs). The fea-
tures used in training include kurtosis, SFM, and MFCC+D, gen-
erating a 26 dimensional feature vector per frame. This is similar
to the setup used in [6, 14] (the aperiodicity measure is omitted as
its computation is not well defined for natural recordings contain-
ing ambient noise and reverberation. Further, this measure was not
found to be of much significance in [14]). The features are com-
puted for every 25 ms window, with a window hop size of 10 ms.
The performance of baseline approach is reported in Table 1.

3.2. Neural Network Approach

The substandard performance of baseline, shown in Table 1, can be
attributed to the choice of features and the use of GMMs. To vali-
date this hypothesis, we harness the modeling capabilities of neural
networks. We explore the performance with few variants of these
networks. A brief description of the features and the neural network
models used is presented below.

Features. Instead of extracting features from the short-time seg-
ments, we use the spectrogram itself as feature. We use the mel-
spectrogram, a frequency warped time-frequency representation of
speech. This is obtained by binning the short-time (25 ms, with hop
size of 10 ms) segment magnitude Fourier transform of speech with
non-linearly arranged triangular frequency filters. The logarithm of
the weighted sum of spectral energy, in each bin, gives the mel-
spectrogram representation of 40 dimensions. We denote this fea-
ture by fbank. A feature vector corresponds to context of 11 frames,
5 frames on either side of the current frame.

Deep neural network (DNN). A feed forward DNN with 3 hid-
den layers and each layer containing 256 neurons is used. Rectified
Linear Units (ReLU) are used as activations. The input feature vec-
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Table 1. Detection accuracy % with GMMs (Baseline approach) [4].

[ Data |

TIMIT
AMI

Feature | Single [ Overlap | Avg. |

kurt.+SFM+MFCC+D | 59.6 69.4 64.5
kurt.+SFM+MFCC+D | 43.1 61.9 52.5

Table 2. Detection accuracy % on TIMIT Overlap dataset with NNs
on fbank features (Proposed approach)

| Model | Single [ Overlap [ Avg. |

DNNJ[3 layers] 73.0 87.0 79.9
CNNZ2D [3 layers] 79.2 71.9 75.5
Istm[512 cells] 73.7 83.1 78.4
blstm[256 cells] 78.7 79.5 78.9
blstm[512 cells] 72.5 87.0 79.7
clstm[1 Conv-Istm(512)] 89.8 52.0 71.8
clstm[3 Conv-Istm(512)] 87.0 63.0 74.9

tor is a vectorized version of each context patch. As a comparison
with

Convolutional network models (CNN) The CNN contains con-
volutional layers which are weight shared feature extraction layers.
CNN model used in experiments has 3 convolutional layers, with
{64, 128, 256} filters and kernel shapes of (3,7), (3,5) and (3, 3).
Finally a pooling layer was added, the output of which was fed into
three dense layers with 1024, 512, and 256 neurons, respectively.

Long short term memory (LSTM) network models The
LSTMs explicitly make use of evolving temporal structure in the
features, and hence have been found suitable for speech recognition
applications [21]. We use a single layer of 512 LSTM cells which
are followed by three dense layers with 1024, 512 and 256 neurons.
The bi-directional LSTMs which process both past and future in-
formation by looking at the input from both time directions are also
explored. We used 512 blstm units with 3 dense layers similar to
network with Istms. Finally, we also experiment with two variants of
convolutional LSTM network, which perform front-end processing
with convolutional model, followed by a recurrent architecture [22].

The first variant comprised of one convolutional layer, the out-
put of which was fed into the LSTM. The second had 3 layers of
convolution with same number of filters and neurons as mentioned
before, and was fed after pooling into the LSTM layer comprising
512 units followed by 3 dense layers.

4. RESULTS

Training of the models was posed as a three class classification prob-
lem, with the classes being single, overlap, and filler, using the Keras
toolkit [23]. The filler class models any extraneous sounds that are
neither single speaker nor overlapped speech segments. The data for
the filler class is derived from the non-speech regions of the dataset.
Using the filler class obviates the requirement for an accurate voice
activity detector (VAD, designing an accurate VAD for natural noisy
speech recordings is challenging). The performance of the trained
models are reported on test/evaluation data at frame level accuracies
of single speaker class and overlap class. In the AMI dataset, even
after forced alignment, a significant number of segments are not an-
notated. As it is not possible to identify false alarms in such cases,
we do not opt for reporting Equal Error Rate (EER). We also report
the performances on only the single speaker class and overlap class
due to the above mentioned issues in the dataset.

The baseline performance using GMMs is shown in Table 1.
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Table 3. Detection accuracy % on AMI Meeting Dataset with origi-
nal annotations, data augmentation, on fbank features.

| Model [ Single [ Overlap [ Avg. ‘
DNN|3 layers] 56.3 73.0 64.7
Istm[512 cells] 76.0 60.6 68.4
blstm[256 cells] 51.4 75.3 63.4
blstm[512 cells] 58.3 71.8 65.1
clstm[1 Conv-1stm(512)] 49.5 74.5 62.0
clstm[3 Conv-Istm(512)] 57.8 68.0 63.0

Table 4. Detection accuracy % on AMI Meeting Dataset with force
aligned annotations using fbank features.

| Model | Single [ Overlap [ Avg. |
DNNI3 layers] 63.9 78.0 70.9
CNN2DI3 layers] 73.0 63.8 68.4
Istm[512 cells] 77.0 68.0 72.5
blstm[256 cells] 68.9 75.4 72.1
blstm[512 cells] 57.8 79.0 68.4
clstm[1 Conv-1stm(512)] 36.3 87.4 61.8
clstm[3 Conv-Istm(512)] 39.3 87.2 63.2
Istm[512 cells][without data aug] | 66.37 69.23 67.8
Istm + Viterbi decode 87.9 71.0 79.4

Each of the three classes were modeled using 512 component
GMMs. The train and test dataset contain TIMIT segments without
any additional noise and reverberation effects. The filler class mod-
els silence. The GMM based approach performs reasonably well
on this dataset. As expected, the performance degrades on the AMI
database. For comparison, a 3 layer DNN with the same features as
that of the baseline was trained. This gave an average accuracy of
68.3%, a 30% improvement over GMM approach. Basing on this
improvement, the following experiments focused on using neural
network architectures with contextual features.

e TIMIT - The results for overlap detection on the TIMIT dataset
using neural network approach are reported in 2. As seen here, the
CNN and LSTM models models’ results are significantly better
than that of the baseline GMM results. The best result is obtained
with the 3 layer DNN model, although the bidirectional LSTM
model is similar in performance.

¢ AMI - In the first set of experiments with AMI dataset we used
original AMI annotations. Data augmentation is used to have a
more enriched training for overlap detection on the AMI dataset.
For this, we use the overlap dataset created using TIMIT corpus,
together with samples containing additive noise and reverberation
distortions (as discussed in Sec. 2). The results are shown in Ta-
ble 3.

Next, we considered forced aligned annotations as these rectify
erroneous labeling of training and evaluation data. The model ar-
chitectures and features used on the data without force alignment
was used to evaluate the data with forced aligned labels to outline
the improvement in performance (reported in Table 4). The GMM
results for the AMI dataset reported in 1 also uses forced aligned
annotations. As seen here, forced alignment provides less noise
data labels and improves the system performance.

Further improvements on AMI dataset is achieved using pos-
terior Viterbi decoding [24] with a 3 state HMM (filler/single



Table 5. Detection accuracy % on AMI Meeting Dataset using dif-
ferent features with the LSTM model.

Feature Single | Overlap | Avg.
gammatone 66.3 75.1 70.7
gammatone + kurt.+SFM | 67.9 73.5 70.7
fbank + kurt.+SFM 79.1 62.3 70.7

speaker/overlapped speech). Parameters were estimated using
the forced alignment labels on the training set and each record-
ing was decoded in a single pass. As seen in Table 4, Viterbi
smoothing improved the accuracy substantially, increasing frame-
level accuracy to 87.9% for single and 70.9% overlapped speech,
respectively.

In addition to fbank features, we also experimented with gamma-
tone spectrogram [25]. In comparison to the mel-spectrogram,
gammatone spectrogram provides a more accurate modeling of
the peripheral auditory filter bank [25]. We used 64 gammatone
cochlear filters in our implementation. The results are tabulated in
Table 5. The overlap class detection accuracy is better than the sin-
gle class. This is in contrast to the results obtained using fbank fea-
tures. Interestingly, using kurtosis and SFM features with fbank
or gammatone spectrogram does not provide any noticeable im-
provements. We hypothesize that improved modeling capabilities
elicited by LSTM models may subsume any additional advantages
using spectral features like SFM, and kurtosis.

4.1. Impact on Speaker Diarization

To evaluate the impact of overlap detection on speaker diarization,
we implement a state-of-the-art i-vector based speaker diarization
system [26] based on i-vector model [27] (trained on fixed 1.5 s
speech segments, with shift of 0.75 s). The pairwise distance metric
computed using probabilistic linear discriminant analysis (PLDA)
is used. An agglomerative clustering procedure is applied on the
PLDA scores to obtain clusters associated with each speaker. The
performance of the speaker diarization system is measured using the
diarization error rate (DER) (with collar of 250 ms and discarding
multi-talker segments in scoring). The diarization system was im-
plemented using the Kaldi toolkit [20].

The speaker diarization result on a development set composed
of 12 meetings and an evaluation set of 16 meetings is reported in
Table 6. Here, we experiment with three conditions: (¢) use of the
force-aligned AMI segments without discarding overlaps (serves as
baseline), (i¢) pruning the baseline labels by keeping single speak-
ers intact (based on reference) and using the predicted LSTM output
(on the overlap regions), and (ii¢) pruning the baseline labels by
keeping single talker intact and using the ground truth labels for the
overlap regions. This way of evaluation ensured that all the methods
had no contribution of speech detection error in DER computation.
The main contribution of the overlap detector is to provide regions
of single speaker speech which can generate pure talker segments for
agglomerative clustering. As seen in Table 6, the proposed overlap
detection method improves the state-of-art diarization system con-
siderably (relative improvements of 22.1% over the baseline system
for development meetings and 21.0% for the evaluation meetings).

5. CONCLUSION

The findings from the experiments on both the TIMIT and AMI
datasets suggest that the LSTM based models provide better sepa-

Table 6. Diarization error rate (DER) % for development and eval-
uation meetings in the AMI corpus obtained without any pruning of
overlap segments (baseline), pruning using proposed LSTM output
(predicted), and pruning using ground truth labels.

[ Model [ Dev. [ Eval |
Baseline 25.3 | 194
Predicted 19.7 | 15.2

Ground truth | 19.3 | 16.7

fbank features LSTM output
60 rovimare X overlap 60 rovimaie X overlap

40 40
20 20
g 0 0
s -20 -20
-40 -40

-50 0 50 -50 0 50

dimension 2 dimension 2

Fig. 2. t-SNE [28] scatter plots of input fbank features with context
(11x64) and the LSTM 1% layer activation, for single speaker and
overlap frames.

ration between single speaker and overlap classes. In order to under-
stand the working of the LSTM model on this task, we have provided
a visualization of the input fbank representation as well as the LSTM
outputs (the first two dimensions of t-stochastic neighborhood em-
bedding (t-SNE) [28]) in Fig. 2. This is plotted for a meeting file
from the AMI dataset not used in training. The LSTM representa-
tions show significant separation in the single/overlap classes com-
pared to the input fbank representation. Hence, the recurrent net-
work is able to extract representations useful for overlap detection
from the fbank input.

In summary, we have developed an overlap detection based on
neural network models. The previous work on overlap detection
used GMMs with a variety of features. In this work, we have found
that: (¢) recurrent network models like LSTM are quite effective
for overlap detection, and (4¢) instead of designing specialized fea-
tures, spectrograms can be used as features for this task. With exper-
iments on the artificial overlap data on TIMIT, we have illustrated
that the proposed approach performs significantly better than the
baseline methods. In addition, using the AMI meeting dataset, we
show that the usefulness of the proposed system extends to natural
conversational settings, as well, and improvements in a speaker di-
arization application'. The AMI meeting dataset has multichannel
recordings. In future, we plan to build a multi-channel framework
to exploit these recordings, and analyze the implications on overlap
detection performance and robust conversational speech analysis.
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