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ABSTRACT

To date, the bulk of research on speaker diarization has been
conducted on telephone or near-field speech. As the need for
technologies capable of handling conversational speech in-
creases, it is necessary to establish the performance of state-
of-the-art systems in this domain. In this work we evaluate
the performance of an ivector/PLDA-based diarization sys-
tem on the AMI Meeting Corpus, comparing performance on
near-field, far-field, and signal-enhanced conditions.

Index Terms— Speaker diarization, far-field speech

1. INTRODUCTION

Put simply, speaker diarization is answering the question:
“Who spoke when?” More thoroughly, diarization is the task
of identifying where speech is in a recording, segmenting it,
and labeling each segment according to its speaker. As such,
diarization is a critical part of any application dealing with
speech with multiple speakers present.

Recently, the bulk of work on diarization has been re-
stricted to telephone speech, which is near-field, narrow-band,
and typically contains only two speakers [1, 2, 3]. While some
attention has been given to broadcast news [4], nevertheless
this is not representative of many desired applications. For
example, voice-controlled home assistants use far-field mi-
crophones and can face any number of people speaking. In
addition, health and behavioral researchers would like to be
able to automatically process interactions that have been cap-
tured with a fixed microphone. It has been shown that auto-
matic speech recognition systems in these types of situations
perform worse than in the near-field case and require special
treatment to improve performance, and it is unlikely that this
would not be the same for diarization systems.

In this work, we demonstrate variations in diarization per-
formance across multiple conditions and establish baselines
using standard state-of-the-art diarization systems using the
AMI Meeting Corpus [5]. This corpus consists of meetings
of 4-5 people recorded simultaneously over a number of mi-
crophones, particularly a tabletop array, making it uniquely

valuable in establishing diarization performance in conditions
similar to current applications.

2. DATA

Our experiments were conducted using the AMI Meeting
Corpus, which consists of roughly 100 hours of recorded
meetings which have been manually transcribed. Each meet-
ing consists of 4-5 participants who were recorded while
roleplaying a design team, though roughly one-third of the
recordings are spontaneous meetings. The meetings were
recorded simultaneously over a number of microphones. We
used audio recordings from two sources: head-mounted mi-
crophones and tabletop array distance microphones.

For our experiments, we constructed three conditions for
diarization. The first is a single microphone from the tabletop
array (referred to as ‘sdm1’). The second is a beamformed
[6] combination of the eight microphones in the tabletop ar-
ray (referred to as ‘mdm8’). The final is a summation of the
headset microphones to form a synthetic near-field diarization
condition (referred to as ‘hms’). The corpus was split accord-
ing to the standard AMI ASR partition1 into ‘dev’ and ‘eval’
sets, each of approximately 10% of the full corpus, which to-
gether make the test set, leaving the remaining 80% reserved
for training.

An important facet of the corpus is that it is very small,
with a total of roughly 200 speakers and 100 hours of speech.
One effect of this is that the test set of the combined ‘dev’ and
‘eval’ splits is small enough that the error rate can be noisy.
In addition, in cases where external training data is not used,
care must be taken to efficiently use the limited training data.

Ground truth for the training and scoring was generated
automatically from the time-aligned manual transcripts of the
head-mounted microphones from the corpus release. It is
worth noting that in some recordings the corpus-collection
proctor’s speech is present in the recordings, but since he or
she did not have a head mic, their speech was not transcribed.
We chose to omit speech activity detection from our pipeline
and used oracle segmentation, but systems using speech ac-

1http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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tivity detection will likely see slightly inflated error rates due
to incorrect speech detection false alarms for regions where
the constructed ground truth is missing the proctor’s speech.

3. EVALUATION METRIC

Our choice of evaluation metric is Diarization Error Rate
(DER), which is a relatively standard scoring method for
speaker diarization, as developed by NIST. DER is effec-
tively the fraction of time that has been labelled with the
incorrect speaker or as non-speech. In our experiments we
choose to use oracle speech activity marks, so the only errors
come from misattribution of speech to an incorrect speaker.
In addition, the standard parameters on the scoring script
omit from scoring both regions with overlapping speech from
multiple speakers and regions within a collar around speaker
boundaries.

4. METHODS

4.1. General Diarization System

Typical diarization systems consist of four main components:
speech activity detection, speaker representation, clustering,
and resegmentation [7]. The first part is speech activity detec-
tion (SAD), i.e. labeling the regions where speech is present.
This can also include change-point detection for initial seg-
mentation into unlabeled speaker turns. The next step is to
extract some kind of speaker representation from the speech.
This is done either over a fixed-length sliding window or over
speaker turns. The next step is to perform clustering of the
segments, using a score or distance metric. Finally, there is
often some kind of resegmentation, using the learned speaker
labels to readjust the initial speaker boundaries.

For our experiments, we chose to use ivectors [8] for the
speaker representation with a PLDA [9] for scoring and ag-
glomerative hierarchical clustering [10], omitting speech ac-
tivity detection and resegmentation. Our system was built us-
ing the Kaldi speech recognition toolkit [11].

We chose to use oracle speech activity labels over a SAD
system for a number of reasons. While we acknowledge that
speech activity detection is a challenging problem, particu-
larly in the far-field case, the focus of our work was on the
core of the diarization system, and the comparison across con-
ditions is more significant with identical segmentation. In ad-
dition, the DER metric can be somewhat noisy with respect
to variations in the speech activity labelling, particularly at
higher error rates.

We chose to omit resegmentation from our system due to
generally relatively minor gains. This is in part because the
standard scoring options for DER include a generous collar of
0.5 total seconds around each speaker boundary that is omit-
ted from scoring.

Details on the specifics of the components of the system
are as follows.

4.1.1. Ivector

For the speaker representation part of the diarization system
we use a relatively standard ivector system to extract ivectors
over a short sliding window over speech regions, leaving the
speaker boundaries to be discovered through the clustering al-
gorithm. We chose a window size of 1.5 seconds with a win-
dow shift of 0.75 seconds. We chose this approach over using
change-point detection to discover speaker segments and ex-
tracting ivectors over those segments due to the belief that
giving each ivector a constant number of frames is more valu-
able than getting potentially longer, more stable ivectors, par-
ticularly since turns can end up being quite short a significant
portion of the time.

The ivector extractor itself is close to a standard ivector
extractor from a speaker recognition system, though smaller
and simpler due to the less strict requirements on speaker la-
bels of a diarization system compared to a speaker identifica-
tion system. We use MFCCs for wide-band 16kHz audio with
first-order deltas as input features. The ivector extractor uses
2048 gaussians with a final ivector dimension of 128.

4.1.2. PLDA

We use Probabilistic Linear Discriminant Analysis (PLDA)
[9] to produce pairwise scores between the ivectors. It is
trained on ivectors extracted from the training data over a win-
dow of 3 seconds to better match the runtime ivectors. Before
being passed to train the PLDA, the ivectors have the global
mean subtracted, are passed through a whitening transform,
and are length-normalized.

4.1.3. Clustering

For clustering, we use Agglomerative Hierarchical Cluster-
ing (AHC) using pairwise PLDA scores between all of the
ivectors in a test recording. This is a “bottom-up” clustering
approach where each ivector is assigned to a cluster and each
cluster is merged according to the PLDA score until a stop-
ping criterion is met.

The stopping criterion is computed using unsupervised
calibration of the PLDA scoring [12]. K-means clustering
is used to fit two clusters to the test condition PLDA scores,
with the average of the centroids as the stopping threshold.
The ‘dev’ and ‘eval’ sets are used as held-out sets for each
others’ stopping criterion.

4.2. Modifications for AMI Corpus

4.2.1. Speaker Representation Variation

We explored two alternatives for the ‘speaker representation’
part of the diarization pipeline. The first was to, rather than
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Fig. 1. Base DER% for initial PLDA training experiments

train an ivector extractor on the AMI data, to use an ivector
extractor taken from a separate speaker identification setup.
The motivation for this was the relatively small amount of
training data in the AMI corpus. As a result we used an ivec-
tor extractor that had been trained on a large amount of wide-
band data with many speakers. The training data was a com-
bination of parts of the NIST 2008 SRE [13] training data,
parts of Mixer 6 [14], and the VoxCeleb corpus [15].

4.2.2. PLDA Training

Due to the very limited number of speakers present in the
AMI training data, we explored different approaches in han-
dling the data to provide a better-performing PLDA. One ap-
proach shown to be successful in ASR systems is to ‘reset’
the ivectors periodically and treat the speech as coming from
a new speaker [16]. In one set of experiments, we experi-
mented with artificially multiplying the number of speakers
by evenly splitting up ivectors for each speaker into a given
number of ‘sub-speakers’ that were considered to be unique
for the purpose of the training of the PLDA. We also took the
approach of considering each speech segment to be a unique
speaker, with each speaker label corresponding to the collec-
tion of short-term ivectors extracted within that segment.

We also conducted experiments in training a more power-
ful PLDA model. Due to the greater variance in ivectors for
shorter time scale, we experimented with extracting long-term
ivectors for the purpose of training the PLDA. The method we
used was to pick a target duration as a floor for length, and
then artificially concatenate speech segments from a speaker
together until the new set of segments were all above the tar-
get duration in length.

We also reduced the number of ivectors used in the PLDA
by passing only a fraction (referred to as the ‘reduction fac-
tor’) of a speaker’s ivectors to the PLDA. We did this due to
the small number of speaker present in the training data. We
did not artificially increase the number of speakers as done
with the short-term ivectors due to the long-term ivectors hav-
ing less variance, which would confuse the PLDA with mul-
tiple ivectors from a single speaker being treated as separate
speakers. As a result, we simply reduced the number of ivec-
tors per speaker in hopes that the model would not overtrain
on the small set of speakers and would thus generalize bet-
ter. In addition, due to the decreased number of ivectors used
in the training, we used a mean computed from the short-
time ivectors for the global mean that was subtracted from
the long-term ivectors.

The parameters for the long-term ivector target length and
per-speaker reduction factor were tuned after the fact. Due to
the already small test set, we used oracle calibration rather
than a held-out set. However, the parameters were chosen us-
ing overall trends rather than the minimum error rate to min-
imize reporting statistical noise resulting from the size of the
test set.

5. RESULTS

Figure 1 shows the results of our experiments with artificially
increasing the number of speakers passed to the PLDA. We
focused on the single far-field mic for these experiments. The
baseline is equivalent to a speaker multiplier of 1. There are
on average roughly 200 segments per speaker, so the segment-
based training is given a number of speakers on par with the
speaker multiplier of 200. Increasing the number of different
speaker classes passed to the PLDA does decrease the error
rate, with segment-based speaker labels giving the best er-
ror rate. As a result, we used this method of PLDA training
for the other experiments on the differing speaker representa-
tions.

It is worth noting, however, that despite being passed
identical ivectors with comparable number of sub-speaker
classes, the segment-based training performs noticeably bet-
ter than the case with a speaker multiplier of 200. We believe
this to be the result of all the ivectors of a sub-speaker class
being temporally close in the segment-based case in contrast
to the speaker-multiplier case, where ivectors of a sub-speaker
class are taken evenly throughout the recording. As a result,
changes in a speaker’s speech over the course of a recording
may be simulating differences between speakers, leading to a
better-trained PLDA.

Fig. 2. DER% comparison between different speaker repre-
sentations

Figure 2 shows the results of the experiments with differ-
ent speaker representations. Using an ivector extractor trained
on a greater amount of external data provides noticeable im-
provements to the error rate, with the exception of the syn-
thetic near-field head mounted mic case. The modest im-
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Fig. 3. DER% comparison between baseline and long-term ivector PLDA training.

provements in this case suggest that the noise of a condition
dictates the required quality of the model. The increase in
performance using the external ivector extractor system sug-
gests that providing an adequate amount of training data is the
most critical component of performance of these systems.

In all cases, the far-field speech conditions performed
worse than the synthetic near-field case, though the beam-
formed version approached the near-field case with the better
systems. Since the conditions feature the exact same speech,
this demonstrates that there is a degradation of diarization
performance from near-field to far-field case, and steps taken
to address this (e.g. beamforming) can improve performance.

Figure 3 shows the results of training the PLDA using the
long-term ivectors, using both the baseline ivector system and
the ivector system trained on external data. This method does
improve the diarization error rate, though the gains on the
better-trained are smaller. This does suggest, however, that
better PLDA training could offset the harm done by a less
well-trained ivector extractor, which could be useful in cases
where there is a limited amount of in-domain training data.

In terms of the parameters used for the passing long-term
ivectors to the PLDA model, the optimal operating region
shifted towards longer segment lengths and more data reduc-
tion as the quality of the ivectors decreased, using the as-
sumption that noisier data and worse extractor models lead
to lower-quality ivectors. This makes intuitive sense, as us-
ing more frames per ivector would be expected to produce
higher-quality ivectors which could offset a poor model. The
reduction factor also could be mitigating the increased vari-
ance per speaker from poor-quality ivectors.

6. CONCLUSION

In this work we sought to establish the current state of di-
arization performance on far-field speech. For this we used
the AMI Meeting Corpus, which introduced the additional
problem of a small amount of training data. We have demon-
strated that there is a degradation of diarization performance
on far-field speech. Taking directed approaches to reducing
this degradation shows gains, but standard methods have not
yet reached state-of-the-art performance on near-field speech.
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