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ABSTRACT

The field of speech recognition has seen tremendous
advances in the recent past owing to the development
of powerful deep learning architectures. However, the
closely related fields of speech segmentation and di-
arization are still primarily dominated by sophisticated
variants of hierarchical clustering algorithms. We pro-
pose a powerful adaptation of the state-of-the-art Speech
Recognition models for these tasks and demonstrate the
effectiveness of our techniques on standard datasets.
Our architectures are a combination of Bidirectional
Long Short Term Memory (LSTM) Networks, Convolu-
tional Networks, and Fully Connected Networks, trained
by Gradient Descent to minimize the Cross Entropy and
the Connectionist Temporal Classification (CTC) losses.
We adapt the Libri Speech corpus for the task of seg-
mentation and diarization. We obtained comparable
results with respect to state-of-the-art in both tasks.
Index Terms: Speech recognition, speech diarization,
speech segmentation, deep learning, neural networks.

1. INTRODUCTION

Automatic speech recognition (ASR) deals with the
transcription of speech signals into text, while speaker
diarization partitions an audio stream into contiguous
segments based on the identity of the speaker. The for-
mer answers the question, “what was said?”, while the
latter answers the question, “who spoke when?”. In
conjunction, they can be used effectively to transcribe
conversations, a task especially important for broadcasts
and meetings [1, 2]. To the best of our knowledge, there
has not been any effort to jointly model these two tasks.
Moreover, the state-of-the-art in both rely on very dif-
ferent methods. In this paper, we propose a joint model
in the deep learning paradigm. Current state-of-the-art
speech diarization and speaker identification systems

rely on long pipelines, with several phases employing
complex, hand engineered processing stages or features.
Deep learning has accelerated the field of ASR to yield
highly accurate end-to-end systems. The objective of
the proposed work is to leverage the recent develop-
ments in ASR to propose end-to-end solution for speech
diarization and segmentation.

We proposed a deep architecture based on Deep
Speech 2 [3]. Our system utilizes a combination of
convolutional, bidirectional LSTM and fully connected
layers. We minimize the cross entropy and CTC losses
using gradient descent. We performed variety of exper-
iments on the proposed model. For evaluation, we used
an adaptation of the Libri Speech corpus1 [4] for the
diarization and segmentation tasks.

2. RELATED WORK

It has been shown that recurrent neural networks (RNN)
perform well in end-to-end speech recognition[5]. These
models broadly exploit two different paradigms, used to
map variable length audio sequences directly to vari-
able length transcriptions. The RNN encoder-decoder
paradigm uses an encoder RNN to map the input to a
fixed length vector. A decoder network then expands the
fixed length vector into a sequence of output predictions
[6]. Adding an attentional mechanism to the decoder
greatly improves the performance of the system, partic-
ularly with long inputs or outputs [7].

The other commonly used technique for mapping
variable length audio input to variable length output
is the CTC loss function [8] coupled with an RNN to
model temporal information. The CTC-RNN model
and its derivatives perform well in end-to-end ASR
[9, 3, 10].

1http://www.openslr.org/12/
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The general approach to speaker diarization is a two-
step process of segmentation and clustering [11, 12].
Metric based segmentation is the most popular, rely-
ing on metrics such as the Bayesian Information Crite-
rion, Generalized Likelihood Ratio, etc. Clustering may
be carried out top down, or bottom up, the latter being
slightly more popular.

The bottom-up approach estimates a number of
clusters or models and aims at successively merging and
reducing them until only one remains for each speaker.
Clusters are usually modeled with Gaussian Mixture
Models (GMMs). Upon merging, a single new GMM
is trained on the data that was previously assigned to
the two individual clusters. The top-down approach
initially models the entire audio stream with a single
speaker model. It then proceeds to successively add new
models to it, until all the speakers are considered to be
accounted for.

3. MODEL

Our model can be semantically decomposed into three
parts which are discussed in the following subsections.
However, it is to be noted that the entire deep learn-
ing architecture is trained and deployed jointly and the
breakup is only for the ease of discussion.

3.1. Recognition Module

The ASR module is adapted from Baidu’s DeepSpeech 2
[3] architecture. This module consists of a combination
of convolutional, recurrent and fully connected layers.

The hidden representation at a layer l is represented
by the vector hl. We use h0 to represent the input x. The
lower layers consist of one or more convolutions over
the time dimension of the input. For a context window
of size c, the ith activation at time-step t of the convo-
lutional layer is given by Equation 1, where � denotes
the element-wise product of the i-th filter and the con-
text window of the previous layers’ activations, and f
denotes a unary non-linear function.

hlt,i = f(wl
i � hl−1t−c:t+c) (1)

As our non-linearity, we used the clipped rectified-linear
unit (ReLU) function σ(x) = min(max(x, 0), 20).

One or more bidirectional recurrent layers follow
the convolutional layers. The forward (

−→
h l

t) and back-
ward (

←−
h l

t) recurrent layer activations are computed as

in Equation 2. −→
h l

t = g(hl−1t ,
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The output activations for the layer are formed from the
sum of the two sets of activations as hl =

−→
h l +

←−
h l.

The function g is the standard recurrent operation, given
as
−→
h l

t = f(W lhl−1t +
−→
U l−→h l

t−1 + bl), where W l is the
input-hidden weight matrix,

−→
U l is the recurrent weight

matrix and bl is a bias term. The bidirectional recur-
rent layers are followed by fully connected layers, as in
Equation 3. hlt = f(W lhl−1t + bl) (3)

The output layer L performs a softmax operation,
computing the probability distribution over characters,
as given by Equation 4.

p(lt = k|x) =
exp (wL

k · h
L−1
t )∑

i exp (w
L
i · h

L−1
t )

(4)

We also introduced a special end-of-segment charac-
ter. Our system uses this character to indicate a change
in speaker. This is externally synchronized with the out-
puts of the segmentation and diarization modules. The
recognition module is trained using the CTC [8] loss
function.

3.2. Segmentation Module

The segmentation module uses the features learnt by the
outputs of the recurrent layers of the recognition mod-
ule, to estimate the probability of an end-of-segment
marker. This is essentially a binary classification task.
We use multiple fully connected layers for this task, as
in Equation 5.

hlt = f(W lhl−1t + bl) (5)

In the intermediate layers we use the ReLU for our
non-linearity f . The last of these feedforward layers is
fed through a sigmoid function, to allow restrict the out-
put range to (0, 1) as required for predicting probabili-
ties. Finally, a threshold is used to determine whether an
end-of-segment marker is predicted or not. This thresh-
old is a hyperparameter tuned on the development set.

The module is trained to minimize the cross entropy
of prediction, as in Equation 6, where lt and ht represent
the labels and the predictions, respectively. The labels
lt = 1 at segment boundaries, and 0 otherwise.∑

t

lt log (ht) + (1− lt) log (1− ht) (6)
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3.3. Diarization Module

The diarization module accepts the inputs from both the
recognition as well as the segmentation modules to per-
form diarization. The features learnt by the recurrent
layers of the recognition module are selected for further
processing by the outputs of the segmentation layer. It
is to be noted that there is a one-to-one correspondence
between the frames in the output of the segmentation
module, the features of the recognition module and the
frames in the original audio signal.

Once we have a set of features corresponding to the
predicted end-of-segment points, hi, we construct a sim-
ilarity matrix as shown in Equation 7.h11 . . . h1n
. . . . . . . . .
hn1 . . . hnn

 =
1

2
(1+


hT
1

|hT
1 |
. . .
hT
n

|hT
n |

·( h1
|h1| . . . hn

|hn|

)
)

(7)
Each hij predicts the probability of the ith and jth

segments belonging to the same speaker. This module is
also trained to minimize the cross entropy of prediction,
as in Equation 8, where lij are the labels and hij are
the predictions. The labels lij = 1 if segments i and j
belong to the same speaker, and 0 otherwise.∑

i,j

lij log (hij) + (1− lij) log (1− hij) (8)

3.4. Joint Model

The three modules described above is trained and used
jointly as an end-to-end system. The structure of the
joint model is outlined in Figure 1.

In the figure, it is to be noted that common features
are obtained from the combination of convolutional and
bidirectional recurrent layers. These are used by the
three modules or heads for recognition, segmentation
and diarization. The mathematics underlying these mod-
ules has been described in the previous subsections.

4. DATASET

We realized in the early stages of our work that datasets
containing sufficient information at the required level of
granularity for the joint task of segmentation, diarization
and recognition were unavailable. Hence we decided
to adapt the widely popular open source Libri Speech2

2http://www.openslr.org/12

dataset [4] for ASR to our task and created synthetic
training data3. The construction of the new dataset is
outlined below.

We gathered the set of distinct speakers, and col-
lected all audio samples along with their corresponding
transcriptions. n-segment speech samples were gener-
ated by computing n random derangements of the set
of speakers. We randomly selected and combined sam-
ples of the corresponding speakers in the derangements,
keeping track of the segmentation points and build the
diarization similarity matrix. This matrix represents the
similarity between two snippets from the point of view
of performing diarization. The higher the similarity, the
greater the chances of it being the same speaker. It is to
be noted that this matrix reduces to the identity matrix if
the constructed sample was composed of unique speaker
segments. In any case, the matrix is always symmetric.
The process for the generation of the dataset is outlined
in figure 2. The idea is illustrated on a database of 5
speakers, for 4 speech segments. Since the 1st and the 3rd

speech segments are from the same speaker, the similar-
ity matrix for the 1st generated clip is ai,j = 1∀(i, j) ∈
{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 4)} and ai,j = 0
otherwise.

5. EXPERIMENTS

5.1. Setup

We carried out our experiments and report results only
on the two-speaker subset of our dataset. We imple-
mented our model4 in the TensorFlow5 framework. We
first trained the feature extractor and the recognition
head. We fine-tuned a freely available pretrained model6

for the task.
While training the segmentation and diarization

heads, we kept the weights of the feature extractor lay-
ers fixed. The remaining network parameters were ini-
tialized using Xavier initialization [13]. We trained for
16 hours on a Quadro M6000 to obtain the results (cf.
Section 5.2), using the Adam Optimizer. We trained our
model using various learning rates, differing uniformly
on a logarithmic scale, for a fixed number of initial
epochs. Following this we continued to train the most

3https://github.com/aaiijmrtt/SAYSWHO
4https://github.com/aaiijmrtt/SAYSWHO
5https://www.tensorflow.org/
6https://github.com/SeanNaren/deepspeech.torch
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Fig. 1. Schematic diagram of the proposed model.

Fig. 2. Dataset generation process.

promising models for an extended number of epochs on
the training set. Finally, we fine-tuned the models by
manually monitoring the learning rates for the final few
epochs. The threshold for segmentation is also treated
as a model hyperparameter.

5.2. Results

To the best of our knowledge, no evaluation metric has
yet been proposed for the joint task attempted in this
work. The subtasks themselves have well established
evaluation measures, however. Therefore, we separately
evaluated the various subtasks.

For evaluation, we used word error rate (WER) and
diarization error rate (DER), the most common evalu-
ation metrics for ASR and speech diarization, respec-
tively. On the ASR subtask, we obtained a WER of 12

on the Libri Speech corpus and 8.25 on the AN4 cor-
pus. This is comparable to the WER of 7.89 reported
by Deep Speech [9] and 5.33 reported by Deep Speech
2 [3] on the Libri Speech corpus. The state-of-the-art
DER performance varies between 3 to 20 [14]. Our sys-
tem achieved a DER of 2.51.

We also computed precision, recall and f1 scores for
the segmentation task. Since we theoretically treated
the subtask as a binary classification problem over the
speech frames, we highlight the high precision, recall
and f1 scores of 0.82, 0.87 and 0.84, respectively, on
the test set as indicative of the success of our system.
We also noted that the subtask is deceptively challeng-
ing, since end-of-segment markers are sparse, ≤ 1% for
most samples. To tackle this challenge effectively, we
bias the cross-entropy calculations, penalizing the model
by a factor of 100 for missing an end-of-segment marker.
Furthermore, we allow the model to predict an end-of-
segment marker within a small window of 2 frames in
either direction of time to account for small variations.

6. CONCLUSION

We presented a novel deep learning model which jointly
performs the tasks of speech identification, segmenta-
tion and diarization. We trained our model on an adapta-
tion of the open source Libri Speech dataset, developed
to include segmentation and diarization labels. Our re-
sults are comparable to the state-of-the-art systems in
each of the tasks.
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Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio, “Learning phrase representa-
tions using RNN encoder-decoder for statistical
machine translation,” CoRR, vol. abs/1406.1078,
2014.

[7] William Chan, Navdeep Jaitly, Quoc V. Le, and
Oriol Vinyals, “Listen, attend and spell,” CoRR,
vol. abs/1508.01211, 2015.

[8] Alex Graves, Santiago Fernández, Faustino J.
Gomez, and Jürgen Schmidhuber, “Connec-
tionist temporal classification: labelling unseg-
mented sequence data with recurrent neural net-
works,” in Machine Learning, Proceedings of
the Twenty-Third International Conference (ICML
2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006, 2006, pp. 369–376.

[9] Awni Y. Hannun, Carl Case, Jared Casper, Bryan
Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta,
Adam Coates, and Andrew Y. Ng, “Deep speech:
Scaling up end-to-end speech recognition,” CoRR,
vol. abs/1412.5567, 2014.

[10] Tara N. Sainath, Oriol Vinyals, Andrew W. Senior,
and Hasim Sak, “Convolutional, long short-term
memory, fully connected deep neural networks,”
in 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP 2015,
South Brisbane, Queensland, Australia, April 19-
24, 2015, 2015, pp. 4580–4584.

[11] Claude Barras, Xuan Zhu, Sylvain Meignier, and
Jean-Lluc Gauvain, “Improving speaker diariza-
tion,” in IN PROC. FALL 2004 RICH TRAN-
SCRIPTION WORKSHOP (RT-04, 2004.

[12] Margarita Kotti, Vassiliki Moschou, and Constan-
tine Kotropoulos, “Speaker segmentation and clus-
tering,” Signal Processing, vol. 88, no. 5, pp.
1091–1124, 2008.

[13] Xavier Glorot and Yoshua Bengio, “Understand-
ing the difficulty of training deep feedforward neu-
ral networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Re-
sort, Sardinia, Italy, May 13-15, 2010, 2010, pp.
249–256.

[14] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille,
G. Friedland, and O. Vinyals, “Speaker diarization:
A review of recent research,” IEEE Transactions
on Audio, Speech, and Language Processing, vol.
20, no. 2, pp. 356–370, Feb 2012.

5233


