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ABSTRACT

Speaker diarization is necessary with ubiquitous and individualized
recorders. We focus on the specific task of speaker diarization from
two information streams, two microphones, assigned to two partic-
ipants of interest. In real scenarios, speakers may be co-located, in
noisy environments with interfering speakers. Multistream diariza-
tion can exploit additional information and diarization fusion is nec-
essary. In this work we first introduce a new database that realisti-
cally simulates a range of extremely challenging acoustic conditions;
and propose a Minimum Variance of BIC (MVBIC) method to com-
bine information from the various diarization streams. We use a 2-
microphone subset of our proposed database and Root Mean Square
Energy (RMSE) and Mel Frequency Cepstral Coefficients (MFCC)
as our two diarization streams to validate the proposed method. We
show that our proposed method exploits the complementarity of the
individual diarization streams and outperforms static fusion mixing
weights. We also demonstrate the robustness of the MVBIC method
on RT-06S data.

Index Terms— Speaker Diarization, Diarization Fusion, Indi-
vidual Near-field Microphone, Bayesian Information Criterion

1. INTRODUCTION

Significant work has taken place over the last decade in speaker
diarization. Multiple diarization challenges and datasets have been
created and extensive research has taken place in diarization from a
single microphone. NIST challenges have also included Single Dis-
tant Microphone (SDM) and Multiple Distant Microphones (MDM)
[1, 2] diarization.

One of the domains of significant interest recently has been an-
alyzing human behavior. Our group has been very active in the field
with work in several Behavioral Signal Processing [3, 4] domains
such as in Addiction [5, 6], Couples Therapy [7, 8], Suicide [9], Can-
cer [10], etc.. In all of these domains we are increasingly seeing sig-
nals very different from all the existing available diarization corpora.
While internally we can annotate and evaluate our algorithms on such
data, it is difficult to share these due to privacy concerns.

The main differences we observe from available corpora and
from the real-world data we see involve the quality of signals, the
high variability conditions, the availability of multiple microphones
often one or more assigned to a specific individual, and the presence
of interfering sources. One example scenario is when two individu-
als have their own individual recording devices and record their in-
teraction throughout multiple days while they are at home. In such a
scenario, which we will call for the sake of convenience the Multiple
Individualized (near-field) Microphones (MIM) condition, we often
have visitors or TV in the environment that cause interference, but
also beneficial additional information due to the microphone place-
ment. For example we can have multiple diarization streams from the
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multiple microphones, diarization from the mic relative pickup en-
ergy, diarization from the Time Difference Of Arrival (TDOA) etc..

In this work, we will first present an overview of the creation of
a challenging diarization corpus that closely simulates the real world
environments presented above. Then we will tackle the task of how
we can robustly fuse multiple diarization schemes. As a first task in
this paper, we will use the subset of the presented corpus that contains
only 2 speakers and employ only 2 streams for the diarization fusion.
This is not limiting the scope of the work but focuses on a narrower
scenario, which closer resembles our data, as a first stage.

2. THE CREATION OF A DATASET

We created the USCDiarLibri dataset that can be used to test
speaker diarization tasks with various customized setups and ran-
domization. The creation protocol is open-source and available to the
public from our website http: //scuba.usc.edu/software.
It is based on artificial multi-party dialogs made from noisy, rever-
berated audio from the LibriSpeech [11] database and it’s highly pa-
rameterized to allow for diverse conditions. In this paper we describe
the small part of the corpus used for the study, USCDiarLibri2,4,
while a more extensive description of the USCDiarLibri corpus is in
preparation and will also be on our git repo.

2.1. Dialog in USCDiarLibri2,4

USCDiarLibri2,4 consists of 130 sessions (80 used in Sec.4.1
and 50 used in Sec. 4.2). Each session includes 2-channel recordings
from 4 unique speakers. Two of those speakers are the speakers of
interest while the others are interfering.

The speech data comes from the LibriSpeech ASR corpus
[11]. We employed force-alignment to extract accurate word bound-
aries. We generated the number of words in each speaker turn
with Rayleigh random variable with mean of 7.5, which reflects the
skewed distribution of speech segment duration [12]. The total run-
ning time of each session varies due to the available amount of speech
data from each of the 4 speakers in the original LibriSpeech corpus,
and ranges from 7min to 20min.

To generate the dialog the system goes through 6 states: Speak-
ers 1 through 4 (.S;) with probability p = 0.2, No Speech (Ng) with
p = 0.1, and Overlap (O) also with p = 0.1.

e States .S; through Sy are inserting a new turn by the corresponding
speaker right after the previous turn.

e State N, introduces a gap between turns, random in duration
[0, 5sec].

e The O state introduces two turns, one by each the main speakers
S1 and S2, that are overlapping. One of the two speakers is picked
at random as the first overlap-segment. The other speaker can be
activated at any time during the time the first speaker is active (uni-
form probability). The O state ends when both S; and S» turns are
completed.
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Fig. 1. USCDiarLibri2,4 assumes 2 speakers of interest among 4
active speakers. It models reverberation, overlap, and interfering
sources.

2.2. Impulse Response and Spatial Simulation

Figure 1 describes the dimensional information of USCDiar-
Libri2,4 dataset. Two primary speakers talk to their microphones
(Speaker 1 and Speaker 2 in Fig 1) and the other two interfering
speakers (Speaker 3 and Speaker 4 in Fig 1) are co-located around
primary speakers. We assume that each of the primary speakers has
their own microphone at a short distance L=0.3m from their mouth.
The distances between speakers are fixed during a session. To simu-
late acoustical degradation of distant speech in real life, we employed
simulated Impulse Response (IR) [13]. We also set absorption coef-
ficient as 0.25 to simulate an echoic room. The amplitude and time
delay of speech signal is simulated according to distance between a
speaker and a microphone as below:

1
Lmic [t] = 7”

H[t] * Tsource {t — T£:| 1)
Us

where Tmic is signal picked up from the microphone, r is the dis-
tance between the speaker and the microphone, f is the sampling
rate, v; is the speed of sound and H is the amplitude normalized im-
pulse response between the speaker and the microphone that filters
the original source signal Zsource. The dimension of the virtual echoic
room is determined according to distances between speakers, and IR
is convoluted with the source signal.

As mentioned above, due to space limitations, we only describe
the limited subset of USCDiarLibri that is employed in the next sec-
tion. We want to highlight that the full USCDiarLibri encompases
more realistic turntaking, higher control of overlapping sources, con-
trollable number of sources of interest and of interference. For the
scope of this work the subset USCDiarLibri2,4 is sufficient.

3. PROPOSED DIARIZATION FUSION FRAMEWORK

The diarization task for two individual microphones, when sig-
nals contain no noise or interference, can be achieved with near per-
fect accuracy by employing power level differences [14]. However,
in a real scenario, where people are going about their daily lives, in-
teracting with third parties, and under variable acoustic conditions
and relative locations, the diarization task becomes more difficult.
It’s not uncommon for instance for the “other” microphone to be
picking up source louder than the “own” microphone, or both mi-
crophones to be picking up a third speaker.

In such more challenging scenarios, with multiple recordings,
using multiple diarization schemes can be beneficial. For exam-
ple, we can have diarization using various features such as Mel Fre-
quency Cepstrum Coefficients (MFCC), TDOA or relative signal en-
ergy. However the fusion of those diarization decisions becomes
more challenging due to the variable reliability of each diarization
algorithm over different acoustic conditions.

Solely relying on one information does not give the best perfor-
mance [15] because in each diarization task case, speaker characteris-

tics, distances between speakers and room impulse responses all play
roles and make an unpredictable environment. Since MDM condi-
tion also suffers from this issue, the authors in [15, 16] approached
this problem by determining a fixed weight factor by optimizing on a
dev-set to make a compound likelihood model (BIC) based on MFCC
and TDOA.

In real world data however, people interact in diverse condi-
tions and fusion with pre-determined weights from a dev set leads
in extreme performance drop. We therefore require, and propose, a
Minimum Variance of Bayesian Information Criterion (MVBIC) to
effectively combine the various diarization streams. The proposed
MVBIC technique does not fix a weight factor over sessions as in
the previous work [15, 16] but estimates an effective weight for each
individual session'.

To generate our two sample diarization streams, we employed the
Root Mean Square Energy (RMSE) and MFCC features. We chose
RMSE over the TDOA feature used in RT-06S MDM condition due
to the significant drop of performance of TDOA under reverberant
conditions with interfering speakers as described in [17].

3.1. Unimodal Speaker Diarization

Our efforts in this work are to improve multi-diarization fu-
sion. As such, our individual stream diarization is employing the
most widely known algorithms without any modifications. We em-
ploy the prototypical diarization frame work proposed in [18]. This
framework comprises Speech Activity detection (SAD), Segmenta-
tion, and bottom-up clustering algorithm based on Bayesian Infor-
mation Criterion (BIC):

e SAD: we employed the widely used algorithm provided by [19].

o Speech Segmentation: we employed segmentation technique based
on KL distance in [20]. For all the diarization work in this paper, we
use sum of two KL distances from each of two feature streams to
control the effect of segmentation performance. We used a window
length of 50.

e Clustering: we employed the formula for BIC and the clustering
method described in [21].

In this work, we use two diarization feature streams: One is
based on a two-dimensional RMSE feature [22] from each channel
and the second on a 13-dimensional MFCC feature [23] extracted
from mean of two channels.

3.2. Diarization Fusion: Minimum Variance BIC

We propose the Minimum Variance BIC (MVBIC) technique
that efficiently weights BIC distances according to their reliability to-
wards improved clustering accuracy. The concept of minimum vari-
ance optimization has also appeared in the studies from other fields,
such as finance [24] or acoustics [25].

We assume that there is an underlying correct BIC stream that
we are observing through a noisy channel. The hidden, correct BIC
stream will be represented by b and its two observed, noisy versions
by bs;, where in our case ¢ € [1, M]and M = 2 (MFCC and RMSE).
Therefore:

bi =b+n; 2

where the above three are all random variables.
With the above model (2), we want to obtain the optimal fusion
weights that will lead to accurate estimation of the true b value:

M

ZI Zwi bz ZWTb (3)
=1

!n a real world scenario, this can be a sliding window of several minutes.
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Fig. 2. Average DER by distances of interfering speakers from pri-
mary speakers.

where ¢ is index of vector representations and M is the number of
feature vector representations. If we consider all Ng BIC values
between all N speech segments (Np=""5C5) from the session as
given data points, we can calculate the sample variance of b from
given Np BIC values from each of M features as below:

Var [3] =w'Syw 4

Here, we make an assumption that the noise random variable n; is
mean zero and the two noise streams are uncorrelated. This assump-
tion mostly holds if the features are exploiting diverse information as
is in the case of MFCC and RMSE. In addition, we also assume that
the random variable b, which is the hidden and correct BIC value,
and noise random variable n; are uncorrelated. Thus, the M by M
covariance matrix Y, in equation (4) has elements described as:

ohy =0 +on;
Ob,ij = Ob,ji = o? )
where ¢ # j and i,j € [1, M]

where aii, o? and ofm are variances of b;, b and n; respectively.
Using the above assumptions and constraining the sum of weights to
1, we can rewrite the variance of b:

M 2 M
Var[g] = (sz> o+ w? afm 6)
i=1 i—1
M
= o?+> wion, @)
i=1

Thus, minimizing variance of b, we can also minimize the variance
of noise afm on the assumption we make while keeping the o2 intact.
Thus, we can set up a minimization problem as:

Minimize: Var [?b\] =w' Dyw ®
Subject to: wit=1
The solution to the equation (8) would be given as below:
P s |
W= ———— 9
173,11 ©)

With solution in equation (9), we estimate the weight in equation (3)
to obtain b.
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS

We verify the performance of the MVBIC method on USCDiar-
Libri2,4 and on RT-06S data. For the individual diarization streams
we performed BIC value based clustering down to 4 clusters. All
the experimental results below were tested with md-eval software in
RTO06S dataset [2]. The following results are only evaluated for the
primary speakers.

4.1. The effect of the Distances of Interfering Speakers

In this experiment, we wanted to evaluate the effect of the dis-
tance of the interfering speakers from the microphone locations. For
this experiment, we used a rectangular arrangement for the 4 speakers
and generated 20 sessions per distance. We kept the distance between
the two primary speakers fixed (to 5L) and varied the distance a; and
b1, asinFig. 1, keeping a1 = b1. As Fig.2 shows, MVBIC keeps the
DER lower than the single feature diarization methods regardless of
the location of the interfering speakers. Furthremore, this experiment
indicates that both features perform worse when interfering speakers
are near the primary speakers. Importantly, we note that the distance
of the interfering speaker greatly influences the relative accuracy of
each of diarization stream and hence the weight of the stream should
hold in case of fusion. This points further to the need for a dynamic
fusion stream, such as MVBIC, as proposed above.

4.2. MVBIC evaluation on USCDiarLibri2,4

To verify the performance of proposed MVBIC technique, we
randomly assigned the distance between all sources to be between 2
and 20 times L, as in Fig.1 and generated 50 sessions. Using this test
dataset, the performance of proposed MVBIC method is compared
with fixed BIC weights. In Fig. 3, the x-axis represents w, which is
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Fig. 5. The estimated weights (x) layered on the results by each
weight for the subset of RT06S dataset. Indexes h1-h4 refer to index
of microphones.

the weight of the RMSE stream as follows: w! = [wrmsE, wMrcc] =
[w,1 — w]. Weusew = [0,0.1,...,1.0]. The DER results are
visualized for each session and each weight. Note that to keep figure
readable only the first 15 sessions are shown.

The “x” marks in Fig. 3 describe BIC weights that MVBIC tech-
nique estimated for each session. We can see that the choice of w can
play a significant role in the DER for each session. We also observe
that the estimated weights by proposed MVBIC, marked “x”, are
mostly tracking the minima of DER (whitest regions of each row).
This outcome indicates that MVBIC can estimate, optimal according
to our optimization criterion, values of the fusion vector from given
BIC streams that result in near optimum fusion DER.

In Fig. 4, the DER results are shown for 50 sessions. The DER
averages are plotted for the 50 for the different values of w as above.
The last bar shows the result with the average DER based on the
proposed MVBIC method. By optimizing a fixed w on the test set,
we can see significant benefits over individual streams (w = 0 or
w = 1) or equal weights (w = 0.5). The best performing value
in this case would be w' =[0.3, 0.7]. However such optimization
is not possible as the test data are not available at training time, but
only serves as an upper bound for the static w fusion. The MVBIC
method in contrast, even without optimization on the test data, it can
beat any static fusion weight w as we can see from the last bar. This
result shows that if the data is of high variability or mismatched to
the training and development data, the proposed MVBIC can per-
form significantly better than a static, pre-tuned weight. Thus, the
proposed technique can be an effective way to cope with the het-
erogenous data we observe in real-world conditions.

4.3. Evaluating on RT06S

We tested the performance of the proposed MVBIC system
with individual head microphones for each session in RT06S dataset
[2]. We picked three meetings (EDI1: EDI 20050216-1051, EDI2:
EDI 20050218-0900, TNO: TNO 20041103-1130) which have the
same number of total speakers in USCDiarLibri2,4. Among the
four speakers in each meeting, two speakers are regarded as pri-
mary speakers and the rest of two speakers are regarded as interfering
speakers. Thus, total 6 (4C2) microphone combinations were tested
for each of the three meetings.

Fig. 5 shows the same type of visualization as Fig. 3. We see that
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Fig. 6. Average DER by grid-searched weights and esimated weights
from MVBIC for subset of RT06S dataset.

the MVBIC method does not pick as good candidates as we would
expect. We also see that there seem to be multiple minima in the DER
vs w space. This is likely due to the longer length of the sessions
and the varying acoustic conditions. Since we only find one w using
MVBIC per session, this is suboptimal.

Fig. 6 shows the result for RT06S dataset in the same format as 4.
The proposed method showed 46.5% of DER while the most accurate
fixed weight result showed 41.5% of DER. Again we observe that the
MVBIC method approaches the optimize-on-test-set performance of
the static weight.

Despite the highly mismatched conditions of this experiment, i.e.
assuming stationary environment throughout the length of the ses-
sion, which is false, and obtaining a single MVBIC weight w per
session, and the higher-quality head-worn microphones, we still see
significant benefits in using MVBIC.

5. CONCLUSIONS

We introduced a new dataset USCDiarLibri for evaluating Di-
arization algorithms that enables tunable task difficulty and condi-
tions. We described and employed a subset of our proposed dataset.
We also proposed a MVBIC method to estimate the fusion weights
among multiple diarization streams. The proposed technique does
not require any training data to determine the weights while it closely
estimates the ideal weights, optimally according to the minimum
variance criterion. This has significant benefits in real-world envi-
ronments where the recording conditions are highly variable and het-
erogeneous. The proposed method allows also to exploit any avail-
able diarization stream dynamically, i.e., increasing the fusion in-
formation streams if appropriate. In this work, we employed two
diarization feature streams, RMSE and MFCC. A range of other in-
formation streams will be considered in future work such as multiple
MEFCC streams from each microphone, TDOA information, and lex-
ical content similarly to our work in [6].

Further, any contributions by MVBIC are orthogonal to improve-
ments in the individual diarization schemes and so newer methods,
such as Deep Neural Network (DNN) based [26] or i-vector based
methods, can be employed. The contributions are also generalizable
to more sources, microphones, interferences efc. and will be evalu-
ated further with the various conditions made possible by USCDiar-
Libri.
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