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ABSTRACT 

 

Bidirectional long short term memory (BLSTM) recurrent 

neural networks (RNNs) have recently outperformed other 

state-of-the-art approaches, such as i-vector and deep neural 

networks (DNNs) in automatic language identification (LID), 

particularly when testing with very short utterances (∼3s). 

Mismatches conditions between training and test data, e.g. 

speaker, channel, duration and environmental noise, are a 

major source of performance degradation for LID. A 

factorized hidden variability subspace (FHVS) learning 

technique is proposed for the adaptation of BLSTM RNNs to 

compensate for these types of mismatches in recording 

conditions. In the proposed approach, condition dependent 

parameters are estimated to adapt the hidden layer weights of 

the BLSTM in the FHVS. We evaluate FHVS on the AP17-

OLR data set. Experimental results show that the FHVS 

method outperforms the standard BLSTM approach, 

achieving 27% relative improvements with utterance-level 

adaptation over the standard BLSTM for 1s duration 

utterances.  

Index Terms— Language Identification, Bidirectional 

LSTM, Factorized Hidden Variability Learning, DNN 

Adaptation 

 

1. INTRODUCTION 

 

Mismatch between training and testing utterances has been a 

perennial problem in language identification (LID) [1, 2]. 

This mismatch may be compensated for in the feature domain 

by techniques such as shifted delta coefficients and 

eigenfeatures [3, 4]. Use of the total variability i-vector 

modelling approach [5] to acquire fixed length 

characterization of utterances is a common practice in 

modern LID systems. This structure features low intra-class 

variability, producing compact clusters provided that 

sufficient statistics are estimated accurately from an 

utterance. The major problem with this framework is 

performance degradation for short utterances.  However, 

modern end-to-end automatic LID systems using 

bidirectional long short term memory (BLSTM) recurrent 

neural networks (RNNs) are proven to be effective for short 

duration LID tasks [6]. Realistically, all prevailing machine 

learning techniques using DNNs are vulnerable due to the 

mismatch conditions between the training and testing data 

and leads to performance degradations [7]. The variabilities 

arising from these mismatches can be normalized either by 

augmenting the features or by the model transforming to 

match testing conditions. Several adaptation techniques can 

be used to minimize the training and testing condition 

mismatches and overcome the problem of these variabilities. 

Although data exists with sufficient duration to train the 

system, test utterances can have very short durations in 

practice. These short duration utterances are the most affected 

by mismatched conditions in the testing phase.  

     Adaptation of DNNs is important to obtain significant 

reductions in error rates [8-11]. A popular approach is to 

combine Gaussian mixture model adaptation techniques with 

DNNs and train the tandem systems [12]. In tandem systems, 

a DNN extracts bottleneck features to train an i-vector 

system. Subspace methods are also used to perform DNN 

based acoustic model adaptation [13]. Mismatch is reduced 

in adaptation methods by changing a previously-trained 

model to match the test conditions, as opposed to adaptive 

training, which reduces the mismatch during training. 

Adaptation methods based on linear transformation augment 

a condition dependent linear layer with the original model 

[14]. The adaptation is performed to a subset of model 

parameters in subspace methods [15], which can help to avoid 

overfitting. The prominent feature of regularization based 

adaptation is to maintain similarity between training and 

testing conditions by introducing an additional error in the 

training process [16]. Methods using adaptive training can be 

grouped as cluster adaptive training [17], feature 

normalization techniques such as constrained maximum 

likelihood linear regression [18], and vocal tract length 

normalization [19].  

     In this paper, we propose the factorized hidden variability 

subspace (FHVS) technique which performs the adaptation in 

a subspace to capture the variability in training and testing 

conditions. Condition dependent parameters are estimated in 

FHVS and recombined to the BLSTM layer using new 

weights which are adaptively trained. During the training i-

vectors used to initialize the FHVS and then during test-time, 

a test i-vector is transformed through the trained FHVS to 

utilize the condition information therein. The main intuition 

is to use i-vectors to learn the parameters of the FHVS 

system, since they are more withstanding to mismatch 

conditions. However, any other feature vector can also be 

used to learn this subspace. We propose a modified BLSTM 

structure which is utterance adaptively trained using i-vectors 

[5]. The i-vectors can be considered as low dimensional 
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representations of the utterance characteristics. Our method 

creates a new subspace that learns a feature transformation 

based on i-vectors. 

 

2. PROPOSED FACTORIZED HIDDEN 

VARIABILITY SUBSPACE 

 

A conceptual diagram of our proposal is as shown in Figure 

1. Bidirectional LSTM systems are based on the idea that the 

output at time t may not only depend on the previous hidden 

elements in the sequence, but also on the future hidden 

elements. Stacking two LSTMs on top of each other forms a 

BLSTM. Then hidden states of both LSTMs are used to 

determine the output. The objective of LID is to accurately 

identify a given language from a pool of languages in a 

similar manner to a labeling task [20]. Therefore, labeling 

based on the past, present and future samples of the sequence 

may enhance the predictive capability of the embedded 

languages. BLSTMs process data in both directions and then 

the results of both directions are concatenated in the output of 

the BLSTM layer. This output 𝒚𝒕 can be computed using the 

acoustic feature input to a layer 𝒙𝒕, the forward sequence 𝒉⃗⃗ 𝒕 

and backward sequence 𝒉⃗⃗⃖𝒕 of the BLSTM hidden states at 

time 𝑡, as 

 𝒚𝒕 = 𝑊ℎ⃗⃗ 𝑦 𝒉⃗⃗
 
𝒕 + 𝑊ℎ⃗⃗⃖𝑦 𝒉⃗⃗⃖𝒕 (1) 

 𝒉⃗⃗ 𝒕 =  ℋ(𝑊𝑥ℎ⃗⃗ 𝒙𝒕 + 𝑊ℎ⃗⃗ ℎ⃗⃗ 𝒉⃗⃗
 
𝒕−𝟏 + 𝒃𝒉⃗⃗ ) (2) 

 𝒉⃗⃗⃖𝒕 =  ℋ(𝑊𝑥ℎ⃗⃗⃖𝒙𝒕 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ 𝒉⃗⃗⃖𝒕+𝟏 + 𝒃𝒉⃗⃗⃖) (3) 

 

where 𝑊 and 𝒃 are the weights and biases respectively. For 

each LSTM memory block, the recurrent hidden layer 

function ℋ is derived as in [21]. Finally, global average 

pooling is conducted for the complete sequence 𝑇 of the 

BLSTM output, yielding 𝒌 as, 

 𝒌 =  ∑ 𝒚𝒕

∀𝑡 ∈ 𝑇 

 
(4) 

    The main intuition for the factorization (𝑉 and 𝑆 in Figure 

1) begins with considering the case that an input feature 𝒙𝒕 

has been distorted by mismatched environment factors. This 

is passed through the system in equation (4) to get a distorted 

output 𝒌. In this study, we propose compensating the hidden 

layer output vector by removing those unwanted parts in the 

network outputs caused by mismatched acoustic factors. This 

is achieved by adapting the existing DNN to overcome the 

mismatch between training and testing.  

     The modified 𝒌′ can be found using the proposed 

factorized hidden variable subspace (FHVS) method, by 

adapting the pre-trained weight parameters of the BLSTM 

system and allowing to learn more abstract information 

throughout the learning scheme.  Employing an utterance 

dependent (UD) feature transformation on the BLSTM 

weight parameters 𝑊ℎ⃗⃗ 𝑦 and 𝑊ℎ⃗⃗⃖𝑦 in equation (1), equation 

(4) becomes 

 

𝒌′ = ( ∑ 𝑊ℎ⃗⃗ 𝑦 𝒉⃗⃗
 
𝒕 + 𝑊ℎ⃗⃗⃖𝑦 𝒉⃗⃗⃖𝒕

∀𝑡 ∈ 𝑇 

)  𝑄 (5) 

where 𝑄 is the UD transformation matrix. Estimating the full 

matrix 𝑄 introduces a vast number of UD parameters, and so 

the utterance representation is reduced by applying a 

constraint on 𝑄 to be diagonal in the training process. We 

propose diagonal elements 𝒑̂ of 𝑄 to be learn using a low-

dimensional representation of an utterance as, 

 𝒑̂ = ℋ(𝑀𝑉𝑆𝝎̂ +  𝝋) (6) 

where 𝝎̂ is a vector in low dimensional space for a given 

utterance (in this paper, an i-vector), and 𝑀 is the subspace 

and 𝝋 is the residual and UD training data used for learning. 

The 𝑉 and 𝑆 are the factorization matrices of feature vector 

𝝎̂. The  𝝎̂ is extracted separately to the BLSTM training. 

Further, adding a nonlinear activation ℋ in equation (6), 

specific to 𝝎̂ enables learning of an abstract representation 

during the training process. In addition, it enables learning  𝒑̂ 

more scalable to the original model.  

     The FHVS adaptation process produces a more stable 𝑄 

when an additional constraint applied diagonally to the 

elements, restricting them in the span of [0, 𝑟], 𝑟 ∈ ℝ. This 

scheme learns 𝑄 while keeping the initial model weights 𝑊 

fixed. Thus 𝑄 acts as a filter for the existing weights, 

improving them based on the condition/utterance dependent 

information. In the proposed method we are using the 

utterance-aware training (UaT) approach, in which utterance 

information is incorporated during training in addition to the 

standard acoustic features. The purpose of deploying UaT is 

that then BLSTM can make use of the additional information 

 
Fig 1: The marker shapes represent the instance labels and 

colors represent the original domains. Both training and 

testing domains are mapped to the hidden space using the 

unsupervised domain invariant transformation T (low 

variability subspace). T is trained using i-vectors. V, S are 

the factorization matrices for the i-vector feature space. 

The metric 𝑀 defined in the hidden variability space is 

learned to minimize the mismatch and to maximize the 

discriminative power between samples in the BLSTM 

network. Domain distributions are indicated by dashed 

ellipsoids. Our learning scheme non-linearly identifies the 

transformation 𝑀. This figure is best viewed in color. 

 

5205



about an utterance to adjust the model parameters for 

utterance normalization. The first step in UaT is the utterance 

information estimation where techniques like i-vectors [22] 

and bottleneck features [23] are commonly used. Further, it 

should be noted that here the adaptation conducted after the 

global average pooling layer where utterance level 

information can directly feed into the BLSTM network.  

     Typically, a matrix factorization problem finds matrices 

(𝑆, 𝑉) such that the product 𝑆𝑉𝑇 closely approximates a given 

data matrix Ω 𝜖 [𝝎̂𝟏, 𝝎̂𝟐 …𝝎̂𝑵], while also requiring 𝑉 and 

diagonal matrix 𝑆 to satisfy certain properties such as non-

negativity, sparseness, etc. This leads to an optimization 

problem of the form 

min
𝑆,𝑉

 𝑙(Ω, 𝑆𝑉𝑇) +  Θ(𝑆, 𝑉)  (7) 

where Θ is a regularization function to enforce the desired 

properties in 𝑆 and 𝑉. Then  𝑙 is some function that measures 

how closely Ω is approximated by 𝑆𝑉𝑇. Improving the 

problem by exploiting a variety of contexts allows us to 

extract the different factors 𝝎̂, leading to superior 

generalization performance. Factorization can also be used to 

reduce the size of 𝝎̂ under a low rank assumption, which has 

the benefit of reducing the overall number of network 

parameters and improving training speed.  

 

3. EXPERIMENTAL SETUP 

 

The complete experimental setup is shown in Figure 2. The 

AP17-OLR training set with 10 languages for training [24] 

was used since it was developed specifically short duration 

language identification and allows for both testing under both 

matched and mismatched conditions. From this, 3 languages 

(Japanese, Russian and Korean) are recorded in two different 

environmental conditions and are designated ‘mismatched’, 

whereas all other languages have only one condition and are 

thus ‘matched’.  We have tested the system for 1s, 3s and ‘all’ 

duration development data which consists of 17964, 16404 

and 17964 total utterances respectively. From these, we 

extract the 13-dimensional Mel-frequency cepstral 

coefficients (MFCC) features using a 25-ms window and a 

10-ms frame-shift. After that bottleneck features (BNF) are 

extracted as in [24]. The BLSTM baseline is trained on the 

these BNF. Cepstral mean variance normalization is 

performed on the features locally, prior to presenting them to 

the BLSTM. The BLSTM has a single hidden layer with 1024 

units, and 10 classes as the outputs. After the BLSTM layer, 

feature level averaging is conducted before feeding into 

softmax layer.  

     The i-vectors are extracted on top of the previously 

mentioned MFCCs. The universal background model 

consists of 2048 Gaussians. We extract i-vectors that are of 

400 dimensions. Training is done using truncated back 

propagation through time (BPTT) with sequences of 100 

frames. The initial BLSTM base model in Stage 1 (shown in 

Figure 1) is trained first. Then factorization matrices 𝑉 and 𝑆 

are estimated using training i-vectors. In Stage 2, 𝑀 and 𝝋  

are learned using the factorized i-vectors for training 

utterances, while keeping the initial model weights fixed. The 

final classification is performed using BNF and extracted 

factorized test i-vectors as input to the BLSTM. 

      In the results Section 4, we discuss two factorization 

methods, single value decomposition (SVD) [25] and linear 

discriminant analysis (LDA) [26]. With regards to the 

regularization term from equation (7), the SVD method aims 

to find components 𝑆, 𝑉 that account for maximum variance 

in the training data (including error and intra-variable 

variance) whereas LDA maximizes the class separation (i.e. 

inter-class variance) when classes are known. 

 

4. RESULTS AND ANALYSIS 

 

In this analysis the focus is to test the hypothesized FHVS 

methods ability to compensate for mismatch conditions on a 

LID task, and to test the effectiveness of the above 

factorization methods on the i-vector (low variability) space. 

Herein, we refer to FHVS using SVD and LDA as SVD_HVS 

and LDA_HVS respectively. 
 

4.1 Analysis of factorized hidden variability subspace 

 

Before evaluating the performance of the proposed LID 

system, the feature space of each system (BLSTM and 

SVD_HVS) was investigated. Histograms of the lengths 

(magnitude) of BLSTM output vectors were generated for the 

Korean language before and after the proposed 

transformation to ascertain if there were differences in feature 

distributions. These are shown in Figure 3. Comparing 

Figures 3.a and 3.b, we can observe that the overlap between 

distributions has increased after FHVS transformation. This 

demonstrates that FHVS helps to overcome mismatch 

between feature vectors from training and testing utterances. 

Distribution mismatch can also be quantified using 

Kullback–Leibler divergence (KL). KL divergence is 

calculated between two distributions (assuming the 

distributions are Gaussian) for BLSTM output feature vectors 

 
Fig 2: Bidirectional factorized hidden variability 

subspace framework for language identification. 
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from training and testing utterances. These are modelled 

separately for Korean language. The resulted values of KL 

divergence became to be 0.7084 and 0.2232 before and after 

the transformation respectively, which demonstrate that there 

is a lower mismatch in the transformed space. Likewise, the 

KL divergence for all other languages is analyzed. 

Improvements are seen in KL divergence for each individual 

language, but Japanese, Russian and Korean had the highest 

improvement compared to all other languages. This suggests 

that FHVS transformation is more effective when there is a 

mismatch between training and testing data.  Figure 4 shows 

a similar trend in system performance for individual 

languages.  

     Table 1 gives the performance of the BLSTM system and 

the gain that can be achieved by performing additional FHVS 

transformation. It is clear that FHVS (SVD_HVS) has 

significant improvements (73.2 to 79.4) for 1s duration 

utterances. This improvement is highly significant (15.66) in 

‘mismatched’ condition languages (Japanese, Russian, and 

Korean) compared to ‘matched’ languages.  

 

Table 1. Performance of the proposed system (SVD_HVS) 

compared to a BLSTM system for AP17-OLR 1s duration for 

matched and mismatched conditions.  

Condition 
Accuracy [%] Improvement 

[%] BLSTM SVD_HVS 

1 Matched 77.43 81.72 5.25 

2 Mismatched 63.66 75.48 15.66 

 
Overall  73.2 79.4 7.81 

 

4.2 Reliability and effectiveness 

 

Here, we compare the effectiveness of FHVS systems with 

respect to the original BLSTM framework as well as the 

hidden variability subspace (HVS) without factorization [27].  

It should be noted that we have not applied any dimension 

reduction in the factorization methods in order to find the 

optimum number of factors. Therefore, for the purpose of 

direct comparison with HVS and FHVS we continued to 

employ 400 dimensional i-vectors without any fine tuning.  

We have tested only the effectiveness of orthogonalization 

into factors to learn the HVS parameters. Table 2 shows that 

the LDA_HVS system achieves the highest relative 

improvement of 27.32% in terms of Cavg, and 21.57% 

relative equal error rate (EER) reduction compared with the 

reference BLSTM system, confirming the effectiveness of the 

FHVS method. Moreover, it is clear that SVD_HVS and 

LDA_HVS systems have similar but significant performance 

gains. However, it is noticeable that HVS gives the majority 

of performance gain compared to baseline BLSTM and 

factorization helped to further reduce the error rates only 

slightly. Finally, we can see similar performance gains across 

the different durations of the utterances.  

 

Table 2. Performance of the proposed FHVS system 

compared to the BLSTM system for AP17-OLR dataset.  

  

 

5. CONCLUSION 

 

In this paper, we have proposed a factorized hidden 

variability subspace (FHVS) method for mismatch adaptation 

to normalize multiple variabilities of speech signals for 

language identification. Our FHVS analysis shows that the 

orthogonality between different attribute subspaces is 

increased, further improving the performance over that of the 

hidden variability subspace (HVS) method. The proposed 

FHVS method estimates utterance dependent parameters in a 

FHVS and connects this to BLSTM layer using new weights 

which are adaptively trained. We evaluated the FHVS system 

on the AP17-OLR database. Experimental results showed 

that FHVS outperforms both the standard BLSTM system 

and a HVS approach.  

 

 

System 

Performance [%] 

1s 3s all 

Cavg EER Cavg EER Cavg EER 

BLSTM 12.14 10.8 6.68 6.12 5.89 5.24 

+HVS 9.14 8.55 4.11 3.98 3.64 3.38 

+SVD_HVS 8.86 8.54 3.89 3.90 3.42 3.30 

+LDA_HVS 8.82 8.47 3.77 3.79 3.30 3.19 

 
Fig 4: System performance comparison of BLSTM and 

SVD_HVS systems for AP17-OLR 1s condition in terms 

of accuracy, for each language. 

 -
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Fig 3: Comparison of training and testing data (a) before 

and (b) after SVD_HVS transformation (showing greater 

overlap) for Korean, a ‘mismatched’ language. 
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