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ABSTRACT 

Recently, hierarchical language identification systems have 

shown significant improvement over single level systems in 

both closed and open set language identification tasks. 

However, developing such a system requires the features 

and classifier selection at each node in the hierarchical 

structure to be hand crafted. Motivated by the superior 

ability of end-to-end deep neural network architecture to 

jointly optimize the feature extraction and classification 

process, we propose a novel approach developing an end-to-

end hierarchical language identification system. The 

proposed approach also demonstrates the in-built ability of 

the end-to-end hierarchical structure training that enables an 

out-of-set language model, without using any additional out-

of-set language training data. Experiments are conducted on 

the NIST LRE 2015 data set. The overall results show 

relative improvements of 18.6% and 27.3% in terms of Cavg 

in closed and open set tasks over the corresponding baseline 

systems. 

 

Index Terms— End-to-end framework, Hierarchical 

framework, Out-of-set language modelling, Language 

identification 

 

1. INTRODUCTION 

The task of automatic language recognition is to 

identify or verify the language being spoken from a group of 

possible languages [1]. The most widely adopted approaches 

to language identification (LID) use acoustic and 

phonotactic information [1, 2]. Specifically, current systems 

employ the i-vector framework trained on both acoustic and 

phonotactic front-ends. Mel frequency cepstral coefficients 

(MFCCs) and phone log likelihood ratios (PLLRs) continue 

to be the most commonly used of these types of front-ends 

and recently bottleneck features (BNF) have exhibited 

promising performance [2-4]. These features represent the 

short term spectral or phonetic information of a speech 

signal. Longer term information is then typically captured 

through the use of supervector representations of utterances 

or through total variability factor analysis in the i-vector 

framework [5, 6]. 

More recently, deep neural networks (DNNs) have been 

employed either in the front-end using BNF or in end-to-end 

architectures for language identification [4, 7]. Deep 

learning approaches e.g. convolutional neural network 

(CNN), recurrent neural network (RNN) and long short-term 

memory (LSTM) have also shown competitive performance 

[8, 9, 10]. These deep learning approaches have become 

popular among researchers and have been successfully used 

to develop end-to-end LID systems, which jointly optimize 

the feature extraction and system backend [8].  

The end-to-end LID system consists of various 

combinations of CNN, RNN variants (e.g. vanilla RNN, 

LSTM and bi-directional LSTM (BLSTM)) or fully 

connected DNN layers including softmax layer [8, 11]. Most 

commonly in these systems, a raw speech signal or 

spectrogram is first processed by CNN layers to extract 

robust low level features. [11]. The CNN consists of a set of 

shared weights applied along the entire input space, which 

processes a portion of the input signal, followed by the max 

pooling layer, which generates a lower resolution version of 

convolutional filter outputs by computing the maximum 

value of filter activations within a specified window. The 

CNN layers are cascaded with one of the RNN variants to 

model long-term temporal information [8, 9, 11-13]. In 

terms of overall system performance, LSTM and BLSTM 

outperforms the other RNN variants. The final stage of an 

end-to-end system consists of fully connected DNN and 

softmax layers to extract hierarchical representations that 

benefit discrimination between classes. The softmax layer 

maps the hidden states into interpretable probability vector 

of target languages. These systems are all single level 

approaches where all language hypotheses are treated in 

parallel [2, 14]. As opposed to single level system where 

each language model is built independently, hierarchical 

structure incorporates prior knowledge about language 

family, and allows for sharing of training data across 

languages within the same cluster/group [11]. 

The hierarchical LID (HLID) framework has been 

previously proposed as an alternative approach that makes 

use of language similarity information to identify languages 

through a multi-level decision [14-16].  In this way, the LID 

problem is solved through a top-down hierarchy of smaller 

sub-problems, with initial high-level decisions pertaining to 

identification of language groups followed by identification 

of specific languages [14]. Despite the superior performance 

of the hierarchical framework, it requires significant extra 

effort to determine appropriate features and classifiers for 

the languages/groups at each node. One possible solution is 

to jointly optimize the feature extraction and classifier at 
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each node to automate the training of hierarchical LID 

system. The question arises as how to develop and optimize 

a DNN for such a system. 

In this paper, we propose two novel approaches to 

training such end-to-end HLID systems by jointly 

optimizing the nodes that are under same sub-tree in the 

hierarchical structure. The first approach combines the loss 

function associated with each node in the same sub-tree. The 

second approach combines the language/group posteriors in 

the prediction layer to form a unique objective function for 

each sub-tree. This work also explores the effectiveness of 

this structure in recognizing out-of-set (OOS) languages 

without using any additional non-target, or OOS, language 

data. 
 

2. HIERARCHICAL FRAMEWORK  

In this work, a previously developed hierarchical 

clustering algorithm is used again to form the initial 

hierarchical structure [17]. The algorithm uses pairwise 

similarities between languages/groups using phonotactic and 

linguistic information. The similarity 𝑆(∙) between a 

language pair (ℓ𝑎, ℓ𝑏) is computed as 

𝑆(ℓ𝑎,ℓ𝑏) = (1 − 𝐾𝑠(ℓ𝑎,ℓ𝑏)) × 𝐸(ℓ𝑎,ℓ𝑏) (1) 

where integers 𝑎, 𝑏 ∈ [1, 𝐿], 𝐿 is the total number of 

languages, and 𝐾𝑠(∙) is the symmetric K-divergence 

between the phoneme probability distribution of ℓ𝑎 and ℓ𝑏. 

𝐸(∙) is the prior language grouping information of language 

ℓ𝑎 and ℓ𝑏  according to the Ethnologue linguistic community 

[25] and is given by: 

𝐸(ℓ𝑎, ℓ𝑏) = {
1, ℓ𝑎 𝑎𝑛𝑑 ℓ𝑏 ∈ 𝐶

0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
 (2) 

Here, C is a language group as defined in Ethnologue. These 

constant prior probability values were selected empirically, 

as in previous work [14, 15]. Figure 1 shows the hierarchical 

structure developed on the NIST LRE 2015 database. 

It can be seen from Figure 1 that the LID task is divided 

into several subtasks which are carried out at each node. At 

each specific node, we distinguish between hypothesis 

languages/groups belonging to the node. Referring to Figure 

1, features tuned at (node)11 model the differences between 

broad language groups (denoted C21 to C26) while the 

subsequent (node)25 models the differences between sub-

clusters of languages within C25 (denoted C34 and C35). 

Finally, features in (node)34 in the last level model the 

differences between languages Brazilian (BR) and Spanish 

Caribbean (SC).  Language cluster specific features tuned at 

each node  have been shown to capture the differences 

between underlying languages/groups effectively [18]. 

However, the existing approach requires the development of 

a language cluster feature extractor at each node in the 

hierarchical structure. In this way, the selection of an 

appropriate classifier at each node puts an extra burden on 

the development of the HLID system. This work presents an 

end-to-end approach to develop a LID system which jointly 

optimizes the language cluster specific features and 

classifiers at each node in hierarchical structure. 

 

3. PROPOSED END-TO-END HIERARCHICAL 

NETWORK 

Figure 2 shows the proposed end-to-end architecture of 

a HLID system. It consists of feature extraction, and 

language group specific networks. The feature extraction 

network consists of two CNN layers to extract robust 

features from the spectrogram and is shared between all the 

nodes in hierarchical structure. The language group specific 

network consists of one LSTM and three fully connected 

DNN layers. The motivation of the language group specific 

network is to capture the language’s/group’s specific long-

term temporal information at each node as shown in Figure 

1. Finally, the softmax layer is trained using 

languages/groups at that node as training targets. We 

propose two novel approaches to jointly optimizing all 

nodes that are under the same sub-tree in the hierarchical 

structure by either combining respective prediction loss 

(Section 3.1) or combining the posteriors of 

languages/groups on the path from the root node of the 

hierarchical tree to the leaf nodes (Section 3.2). 

 

3.1. Approach-I: Optimizing Combined Prediction Loss 

This approach aims to combine the prediction loss of 

each language group’s specific network to define a loss 

function for each sub-tree in the hierarchy. This approach 

leads each sub-tree to have its own loss function to be 

optimized. As an example from Figure 1, the loss function 

associated with sub-tree 𝑇1 is the summation of the 

individual prediction losses of language group specific 

networks at four nodes, namely (node)11, (node)21, (node)31 

and (node)32. 

The language group specific network at (node)k 

produces a prediction loss for the ith speech example (xi, yi,k) 

as follows: 

ℒ𝑘
𝑖 (𝜃𝑓, 𝜃𝑘) = −log((𝐺𝑘(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑘), 𝑦𝑖,𝑘)) (3) 
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Figure 1: Hierarchical language identification framework on 2015 database. 
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where 𝐺𝑓(. ;  𝜃𝑓) represents the feature extraction network 

that learns a function to map a spectrogram into low 

dimensional feature vector at node k, which maps a given 

feature vector into a probability that assigns it to the target 

feature representation, and 𝐺𝑘(. ;  𝜃𝑘) represents the 

language/group labels 𝑦𝑖,𝑘 associated with node k. Finally, 

𝜃𝑓 and 𝜃𝑘 are feature extractor and kth language group 

specific network parameters. Here ‘k’ represents the node 

number assigned to each node in Figure 1 e.g. k11, k21 and so 

on. 

Training the neural network then leads to the parallel 

optimization of the objective function for each sub-tree in 

the hierarchy structure:  

𝐸𝑇𝑗 (𝜃𝑓 , 𝜃𝑇𝑗) = min
𝜃𝑓,𝜃𝑇𝑗

1

𝐼
∑ℒ𝑇𝑗

𝑖 (𝜃𝑓 , 𝜃𝑇𝑗)

𝐼

𝑖=1

 (4) 

Here, ℒ𝑇𝑗
𝑖  is the loss function of jth sub-tree, defined as: 

ℒ𝑇𝑗
𝑖 (𝜃𝑓 , 𝜃𝑇𝑗) = ∑ℒ𝑘

𝑖 (𝜃𝑓, 𝜃𝑘)

𝐾

𝑘=1

 
 

(5) 

𝐸𝑇𝑗  and 𝜃𝑇𝑗 are the objective functions and set of network 

parameters for the jth sub-tree in the hierarchical structure, I 

is the total number of speech examples and K is set of all 

nodes in the jth sub-tree.  
 

3.2. Approach-II: Optimizing Combined Objective 

Function 

In contrast to Section 3.1, where we iterate over all 

nodes k in a sub-tree 𝑇𝑗, here we aim to iterate over 

nodes/clusters in a particular path from root to leaf of the 

sub-tree. We introduce the superscript (n) to denote the 

number of levels n in the sub-tree. An example of such a 

path is highlighted in red in Figure 1 for the Arabic Iraqi 

(AI) language. 

This approach merges the prediction (softmax) layers of 

all nodes in a path from root cluster to leaf language, to 

compute the language posteriors and form a single objective 

function to be optimized. In a HLID system, the language 

posterior of each target language is computed as the chain 

product of the conditional probabilities of a target language 

ℓ𝑡 or cluster/group 𝐶(𝑛), given the parent 𝐶(𝑛−1), on the path 

from root to leaf. The posterior of ℓ𝑡 ∈ 𝑇𝑗 for a given test 𝑥𝑖 

is  

𝑃(ℓ𝑡|𝑥𝑖) = 𝑃(ℓ𝑡|𝐶
(𝑁), 𝑥𝑖) (∏𝑃(𝐶(𝑛)|𝐶(𝑛−1), 𝑥𝑖)

𝑁

𝑛=2

) (6) 

where each term of the product 𝑃(𝐶(𝑛)|𝐶(𝑛−1), 𝑥𝑖) is 

computed as: 

𝑃(𝐶(𝑛)|𝐶(𝑛−1), 𝑥𝑖) =  (𝐺
(𝑛−1)(𝐺𝑓(𝑥𝑖;  𝜃𝑓); 𝜃

(𝑛−1)), 𝑥𝑖) (7) 

𝑃(ℓ𝑡|𝐶
(𝑁), 𝑥𝑖) is the conditional probability of the leaf 

language given its parent cluster. The posterior probability 

of AI (path highlighted red in Figure 1), given an input 

utterance 𝑥𝑖, is expanded using node subscript notation as: 

𝑃(𝐴𝐼|𝑥𝑖) = 𝑃(𝐴𝐼|𝐶31, 𝑥𝑖)𝑃(𝐶31|𝐶21, 𝑥𝑖)𝑃(𝐶21|𝐶11, 𝑥𝑖) 
(8) 

The posteriors for all languages in sub-tree 𝑇𝑗 are then 

concatenated to form a posterior vector   
𝑃(𝓵|𝑥𝑖) = [𝑃(ℓ1|𝑥𝑖)  𝑃(ℓ2|𝑥𝑖) . . 𝑃(ℓ𝑇|𝑥𝑖)]

𝑇 (9) 

Finally, by training the hierarchical structure, we optimize 

the following objective function for each sub-tree: 

𝐸𝑇𝑗(𝜃𝑓 , 𝜃𝑇𝑗) = min
𝜃𝑓,𝜃𝑇𝑗

1

𝐼
∑ℒ𝑇𝑗

𝑖 (𝑃(𝓵|𝑥𝑖);

𝐼

𝑖=1

𝜃𝑓 , 𝜃𝑇𝑗) (10) 

where ℒ𝑇𝑗
𝑖  is the overall loss function of sub-tree 𝑇𝑗, and 

P(𝓵|xi) is used in the overall loss function, taking the place 

of the log argument to equation (3), to compute the overall 

prediction loss (ℒTj) for each sub-tree (Tj).   
 

4. OOS LANGUAGE MODELLING IN END-TO-END 

NETWORK 

In this section, we propose a way to model OOS 

languages at multiple levels of the hierarchy where the OOS 

model at each node is a model of all languages not 

considered at that node. It has been shown that the OOS 

models at each node provide a different background model 

that is specific to the languages considered at each node. 

Consequently, the hierarchical structure can detect OOS 

languages more reliably overall [17]. In the proposed end-

to-end network, OOS language models are incorporated into 

the nodes in the second and third level of the hierarchical 

structure as shown in Figure 1.  

The OOS models are developed at each node by using 

the same training approach as described in Section 3. As the 

end-to-end network is jointly optimized, language group 

specific networks at each node process all training batches 

even if they do not contain data from the languages/groups 

associated with a specific node. Therefore, all the softmax 

layers in the second and third levels of the hierarchical 

structure are developed using 𝐿𝑘 + 1 language models, 

where  𝐿𝑘 is the number of target languages in the kth node 

and the one for the OOS model. These language group 
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Figure 2: End-to-end hierarchical language identification network 

5201



specific OOS models are trained on the data from languages 

that are not present in that group e.g. OOS model for C26 is 

developed on training data for C21 to C25.  
 

5. EXPERIMENTAL SETUP 

The LID experiments reported in this work were carried 

out on the NIST LRE 2015 dataset [19]. The closed set 

results are reported on the NIST LRE 2015 dataset as per 

the fixed test conditions given in [19] that involve 20 target 

languages. The proposed systems are evaluated in terms of 

Cavg and CLLR as per LRE protocol (lower these values 

correspond to better system performance). 10 conversations 

from each language were randomly chosen for development 

purposes. The open set LID experiments require additional 

test data corresponding to OOS languages [20]. This 

additional OOS test data, of 30, 10 and 3 second durations 

from 17 different languages, was selected from the NIST 

LRE 2007 and 2011 datasets as in previous study [14]. They 

include the following languages, Bengali, Czech, Dari, 

Farsi, Thai, Urdu, Japanese, Vietnamese, Ukrainian, Hindi, 

Punjabi, Pashto, Tamil, Turkish, German, Korean and Lao. 
 

5.1. Configuration of End-to-End Network 

This section describes the configuration of the CNN, 

LSTM and fully connected layers to form an end-to-end 

LID system. Input to this network is a spectrogram of 

speech recordings consisting of 128 frequency bins for each 

30ms frame, with a 50% overlapping Hamming window. 

These speech spectrograms are fed into 2D convolutional 

layers and 2D max pooling layers with a filter size of 9x9 

and 3x5 respectively, to extract robust low-level features. 

These features are shared between all language group 

specific networks, consisting of one LSTM layer of 256 

memory blocks, and a four layer DNN comprising of two 

hidden layers of 100 dimension, one bottleneck hidden layer 

of 42 dimensions and a softmax layer, to predict 

languages/groups at each node. The likelihood of each 

language is computed by averaging the frame level 

likelihood for each test utterance. Each hidden layer uses the 

rectified linear unit (ReLU) activation function. A 

momentum optimizer [7] is used to optimize the network 

using the dropout regularization method. The design and 

selection of end-to-end network parameters is consistent 

with the previously developed single level end-to-end 

system in [8]. 
 

5.2. Baseline System 

The performance of the end-to-end HLID system is 

compared to an equivalent single level end-to-end system. 

This baseline system also uses the same end-to-end 

architecture trained to predict all the target languages. For 

the open set experiments, the OOS language model in the 

baseline system was estimated by using the additional 

diverse OOS languages training data as described in [17]. 
 

6. EXPERIMENTS 

Two sets of experiments were conducted: 1) closed set 

language detection, and 2) open set language detection. The 

closed set experiments were conducted to a) quantify the 

performance of the end-to-end hierarchical structure without 

OOS languages, and b) investigate the effectiveness of the 

proposed optimization methods in Section 3. The open set 

experiments were conducted to investigate the proposed 

OOS modelling approach in an end-to-end HLID system. 

We follow the NIST LRE evaluation protocol [19] when 

reporting the results. 
 

6.1. Closed Set Detection Results 

Table 1 compares the performance between the end-to-

end baseline and the proposed HLID systems in the closed 

set experiments. The HLID systems using approaches I and 

II outperform the baseline system by 14.7% and 18.6% 

respectively in terms of Cavg.  
Table 1: Closed set detection results on NIST LRE 2015. 

Language 

Groups 

100* Cavg / CLLR 

Single Level 

(Baseline) 

Hierarchical 

(Approach-I) 

Hierarchical 

(Approach-II) 

Arabic 21.4 / 0.67 19.4 / 0.62 18.8 / 0.60 

Chinese 19.1 / 0.61 13.9 / 0.44 12.7 / 0.42 

English 12.5 / 0.42   9.8 / 0.38 8.5 / 0.35 

French 41.2 / 0.94 37.4 / 0.90 36.9 / 0.89 

Slavic   5.7 / 0.17 4.2 / 0.15   3.7 / 0.14 

Iberian 22.9 / 0.69 20.1 / 0.63 19.2 / 0.61 

Overall 20.4 / 0.58 17.4 / 0.52 16.6 / 0.50 

 

6.2. Open Set Detection Results 

Table 2 compares the performance between the end-to-

end baseline and the proposed HLID systems in the open set 

experiments. We observe that the inclusion of OOS leads to 

performance degradation across all settings when comparing 

with the results in Table 1. The results show that the 

proposed hierarchical OOS modeling outperforms the 

explicit OOS modeling in the end-to-end system. 

Table 2: Open set detection results on NIST LRE 2015. 

Language 

Groups 

100* Cavg / CLLR 

Single Level 

(Baseline) 

Hierarchical 

(Approach-I) 

Hierarchical 

(Approach-II) 

Arabic 26.7 / 0.74 21.1 / 0.67 20.2 / 0.66 

Chinese 25.3 / 0.72 15.7 / 0.47 14.5 / 0.45 

English 18.5 / 0.59 13.5 / 0.43 12.9 / 0.42 

French 47.2 / 1.30 40.2 / 0.91 39.6 / 0.91 

Slavic 10.9 / 0.40  6.1 / 0.28   4.9 / 0.25 

Iberian 27.1 / 0.75 23.2 / 0.71 21.4 / 0.67 

Overall 25.9 / 0.75 19.9 / 0.57 18.9 / 0.56 

 
7. CONCLUSION 

This paper has focused on automating the language 

cluster specific feature extraction and classifier selection 

process at each node in a hierarchical language 

identification system. The study shows that the proposed 

approaches better optimize the hierarchical structure. The 

results also indicate that the development of out-of-set 

language models in a hierarchical framework is better able 

to reject unknown languages than a non-hierarchical 

approach. 
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