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ABSTRACT

In this paper we present a template based algorithm for localizing
speech sources from a binaural recording. Binaural recordings are
associated with head related transfer functions (HRTFs) for each di-
rection which are specific to the object, say head, in between the
two microphones. So, using these HRTFs and time-frequency rep-
resentations of the binaural signals, we learn direction specific two
dimensional reference templates using histograms of interaural time
difference (ITD) in each frequency subband. These are called ITD
pattern templates (IPTs). Test templates are then compared with
each of the reference IPTs. The reference IPT, that matches best with
the test template, provides the estimated direction of arrival for the
test speech source. Experimental results obtained using subject 003
from the CIPIC database show that IPT based localization performs
better than existing methods where the ITD distribution is modeled
using Gaussian mixture model. Given n time-frequency points, we
also present a method with complexity O(n) to compute the IPT,
thus making it computationally efficient.

Index Terms— interaural time difference, gammatone filters,
binaural localization.

1. INTRODUCTION

Speech source localization is essential for a wide range of applica-
tions, including human-robot interaction, surveillance and hearing
aids. Several localization algorithms have been proposed using mi-
crophone arrays with varied number of microphones [1–6]. How-
ever, humans have an incredible ability to localize sounds with just
two ears. We use two key differences/cues to localize sounds. They
are called interaural time difference (ITD) and interaural level differ-
ence (ILD). These are the time difference and the intensity difference
between the signals reaching the two ears whose values depend on
the position of the source. Algorithms inspired by the binaural lo-
calization ability of humans would extract these cues from the two
input signals [7–20].

If we have two omni-directional microphones without an ob-
ject, like the human head in between, then the ITD and ILD will
be frequency independent. However, most applications like robots
and hearing aids will have an object between the microphones. With
the inclusion of an object , the interaural cues become frequency de-
pendent due to the diffractions and reflections caused by this object.
These frequency dependent characteristics of the interaural cues can
be captured by the head-related transfer function (HRTF) [21]. This
frequency dependence motivates the use of time-frequency represen-
tations. One of the most common time-frequency representations is
the Short-Time Fourier Transform (STFT) [9, 11, 13, 15] which as-
sumes uniform subband width and spacing in the frequency domain.
Another approach is to use gammatone filters [22] where the sub-
band width and spacing are not uniform [7, 10, 12, 14]. The use of

gammatone filters is inspired by the filter structure of the cochlea in
human ears. In this work, we use gammatone filters to preprocess
the binaural signals.

The gammatone filtered signals are then processed to obtain the
interaural parameters for each frame in each gammatone subband.
We consider only ITDs in this paper. May et al. [12] and Woodruff
et al. [14] use Gaussian mixture models (GMMs) to model the in-
teraural parameters for each subband in every direction. Then, for a
test-speech, May et al. calculate the log-likelihoods on a frame by
frame basis. In each frame the log-likelihood is obtained by adding
the log-likelihoods of all the subbands. The direction with the max-
imum likelihood is then picked as the direction of arrival (DoA) for
each frame. If there are nf frames, then the mode of the histogram
obtained by accumulating the DoA estimates of these frames is de-
clared to be the DoA of the source. Woodruff et al. introduced a
method called Binaural-ML where, instead of finding the DoA esti-
mates for each frame, the log-likelihoods of T-F points of all the nf
frames are added to obtain a single log-likelihood for each direction.
The direction with the maximum log-likelihood is then picked as the
DoA.

In this paper, we introduce a template matching approach, where
each direction is associated with a unique template. Previously,
Nandy et al. [20] used HRTF magnitude spectrum and Zhang et
al. [19] used learnt Interaural Matching Filters as the templates cor-
responding to each direction. In this work, to incorporate the un-
certainity associated with the frame-level ITDs obtained for each
direction, we use histograms of interaural time difference (ITD) in
each frequency subband to generate the templates, as shown in Fig-
ure 1. These templates are learnt during the training phase as they
are dependent on the object between the two microphones. The mo-
tivation is to obtain a representation that is invariant across many
environmental scenarios rather than using multi-conditional train-
ing [12] or diffuse noise [14] to train the models. In this work, we
restrict our study to the localization of speech sources corrupted by
additive white Gaussian noise (AWGN). It can be seen in Figure 1
that for a particular direction, as SNR decreases, although the pat-
terns get smeared out they are similar to the patterns obtained under
clean condition (SNR =∞). So, we hypothesize that the templates
obtained at SNR = ∞ could be used as the reference templates as
the patterns captured in them are invariant to AGWN. In Section
2.2 we show that this hypothesis is indeed valid. Now, given a test
speech, the corresponding template is computed and then compared
with each of the reference templates. The direction corresponding
to the template with maximum match is chosen as the DoA. In the
remainder of this paper we will refer to these templates as ITD pat-
tern templates (IPTs). IPT generation and matching are described in
detail in Section 2.2. Experiments with Subject 003 from the CIPIC
database [23] reveal that the proposed IPT matching performs better
than the above described GMM based methods. It should be noted
that IPT is obtained by stacking the histograms of ITDs obtained in
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Fig. 1. ITD histograms across subbands (IPTs) for 5 directions at 3 different SNRs (AWGN) for Subject 003 of the CIPIC HRTF database.
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Fig. 2. Block diagram of the proposed IPT matching based localization scheme.

each subband. General histogram algorithms have a complexity of
O(n×nb) where n is the number of T-F points and nb is the number
of bins. However, in section 2.3, we show that IPTs can be obtained
using a technique with a complexity of O(n).

2. PROPOSED TEMPLATE BASED LOCALIZATION

A given test binaural speech is processed through a set of gammatone
filters followed by frame-level ITD computation in each subband as
shown in Figure 2. These ITDs are used to generate IPT which is
then compared with the reference IPTs. The direction corresponding
to the reference IPT with the maximum match is chosen as the DoA
estimate. The details of these steps are discussed in the following
subsections.
2.1. Gammatone Filters and ITD estimation

The binaural signals are processed through 32 fourth order gamma-
tone filters. Their center frequencies are equally distributed with re-
spect to the equivalent rectangular bandwidth (ERB) scale between
80Hz and 5kHz, starting with 80Hz and ending with 4.6kHz. This
range primarily covers the entire speech spectrum. To approximate
the neural transduction process of the inner hair cells, the outputs of
the gammatone filters are halfwave rectified and square-root com-
pressed [12]. The resulting outputs of the left and right channels
of the ith subband are denoted by li and ri. Frame-level ITD in
each subband is calculated using normalized cross correlation (NCC)
[7,12] between li and ri with a rectangular window of lengthW and
shift of length Ws. τi,j is the ITD of ith subband in the jth frame
and is given by

τi,j = argmax
τ

Ci,j(τ), (1)

where Ci,j is the NCC function. In addition to this, exponential
interpolation is used to obtain fractional delays [12].

2.2. IPT Generation, Matching and Localization

Generation: Following ITD estimation, we have the ITD spectro-
gram as shown in Figure 2 i.e., a matrix of size ns × nf where
ns is the number of gammatone subbands and nf is the number of
frames. It contains the ITDs obtained from each subband over all
frames. We then generate the IPT, which is obtained by stacking the
ITD histograms obtained from each gammatone subband. Hence,
IPT is an nb × ns matrix T (b, i), 1 ≤ b ≤ nb, 1 ≤ i ≤ ns, where
nb denotes the number of ITD bins as shown in Figure 2.
Matching and Localization: Consider d directions θ1 · · · θd and
the corresponding d reference IPTs T1 · · ·Td obtained from clean
(SNR =∞) binaural training data. Let Ttest be the test IPT obtained
from test binaural speech. The similarity of Ttest with a reference
template is obtained by taking the sum of all the elements of their
Hadamard product [24]. The direction corresponding to the refer-
ence template with the largest sum is chosen as the DoA. Therefore,
the DoA estimate, θ̂, of the test speech is given by

k∗ = argmax
k

ns∑
i=1

nb∑
b=1

(Ttest(b, i)× Tk(b, i)) =⇒ θ̂ = θk∗ (2)

To motivate the use of Hadamard product we consider the
clean IPTs of -65◦ and 25◦ shown in Figure 3(a) & 3(b). From
the colour bars it can be seen that most of the values in the IPTs
are close to 0. So, if the non-zero regions of the two IPTs are al-
most non-overlapping, the Hadamard product of the two templates
will be a highly sparse matrix as seen in Figure 3(c). Similarly, if
the Hadamard product of every pair of IPTs corresponding to two
different directions is highly sparse, then all these templates are
non-overlapping. If all the the templates are non-overlapping then it
also means that they are unique. Hence, the similarity between a pair
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Fig. 3. (a) & (b) are the clean IPTs corresponding to -65◦ and 25◦. (c) is their Hadamard product. (d) is the similarity matrix for all pairs of
clean IPTs. (e) and (f) are the similarity matrices between clean IPTs, IPTs at SNR = 20dB and clean IPTs, IPTs at SNR = 5dB respectively.
The similarity matrices are computed for the 25 frontal azimuthal directions available in the CIPIC HRTF database for Subject 003.

of IPTs can be obtained by computing the sum of all the elements of
their Hadamard product, as defined in eqn. (2).

Consider the clean IPTs obtained for the 25 frontal azimuthal
directions, ranging from -80◦ to 80◦, of Subject 003 of the CIPIC
database. Let us define SSNR1,SNR2 as the similarity matrix be-
tween a set of 25 IPTs obtained at SNR1 and SNR2. The 25×25
matrix, S∞,∞, is shown in Figure 3(d). It can be seen that, for ev-
ery row, the maximum occurs on the diagonal and is much higher
than the off-diagonal entries. This indicates that the clean IPTs are
almost non-overlapping and hence unique for each direction. Since
we also want to verify if the clean IPTs can be used as reference tem-
plates under AWGN conditions, the similarity matrices between the
clean and noisy IPTs are computed. Figures 3(e) & 3(f) show S∞,20
and S∞,5 respectively. S∞,∞, S∞,20 and S∞,5 are computed using
nf=1000. Let us define r(SNR1, SNR2) as the ratio of the sum
of diagonal elements to the sum of all elements in SSNR1,SNR2 .
We obtain r(∞,∞) = 0.7811, r(∞, 20) = 0.6187 and r(∞, 5) =
0.3789. This indicates that, as SNR decreases, the diagonal values
decrease with respect to the off-diagonal entires. However, it can
be seen in Figures 3(e) & 3(f) that though the the diagonal values
have reduced, in every row the maximum is still on the diagonal and
their values are much higher than the off-diagonal elements. This
indicates that with drop in SNR, the locations of the IPT patterns do
not alter much suggesting that the pattern locations are invariant to
AWGN noise, although the patterns get smeared out. This, in turn,
validates the use of clean IPTs as reference templates for localization
under AWGN.

2.3. Complexity of IPT Generation

As seen in Section 2.2, an IPT is obtained by computing ITD his-
tograms for each of the ns subbands. Each histogram contains nb
bins of constant bin-width bw and forms each column of the IPT
matrix. So, given an ITD from a subband, there could be several
methods to assign it to one of the nb bins. One method is to compute
the distance of the given ITD from each of the nb bin centers/edges
and then find the bin center/edge to which it is the closest. Another
method would be to check sequentially for the bin center whose dis-
tance from the given ITD is less than half the bin-width bw. Both
these methods have a complexity of O(n× nb).

However, the complexity can be made independent of nb if,
given an ITD v, its bin index is computed by

i(v) =

⌈
v − l
bw

⌉
, (3)

where l lower limit of the total ITD range and bw is the bin-width.
It can be seen that this method is independent of the number of bins.
Hence the complexity of this method isO(n). This histogram imple-
mentation makes IPT matching a computationally efficient scheme.

3. EXPERIMENTS AND RESULTS
3.1. Database

Speech from TIMIT database [25] is used for all evaluations. To
simulate binaural speech, Head Related Impulse Responses (HRIRs)
from the CIPIC database [23] have been used. All experiments have
been performed using the HRIRs of Subject 003.

3.2. Experimental Setup

3.2.1. Data preparation

Localization experiments are performed only in the frontal horizon-
tal plane. The CIPIC database consists of HRIRs for 25 directions
in the frontal horizontal plane. Speech from the TIMIT database has
a sampling frequency of 16kHz, whereas CIPIC HRIRs are sampled
at 44.1kHz. Therefore, speech is upsampled to 44.1kHz and then fil-
tered through the HRIRs to obtain binaural speech corresponding to
each direction. Frame-level ITDs are calculated using eqn. (1). This
is done using a frame duration of 20msec (W = 882) with a shift
of 10msec (Ws = 441). While using the NCC function to estimate
the time delay, we restrict the maximum delay to 44 samples i.e, a
delay of ∼1ms. This is because, in general, any delay > 1ms is not
plausible around the human head.

3.2.2. Learning reference IPTs

To train the reference IPTs, we use clean binaural speech (SNR=∞)
of duration 10sec. Considering the frame length and shift mentioned
in the previous section, this provides 1000 frames to train each of
the 25 IPTs corresponding to the 25 frontal azimuthal directions.
Each IPT is a matrix where the ith column is a histogram of the
ITDs from the ith subband. To obtain each of these histograms, we
consider 101 bins of equal width over the ITD interval -1 to 1ms. The
histograms are obtained using eqn. (3). Then, we concatenate all the
32 histograms to obtain an IPT of size 101×32. The reference IPTs
Tk, 1 ≤ k ≤ 25 for all the 25 directions are thus learnt separately.
So, given a test binaural speech, the corresponding IPT, Ttest, is
computed and compared with these reference IPTs, using eqn. (2) to
obtain the DoA. It should be noted that there is no need to normalize
the reference IPTs as long as each of them are trained using the same
number of frames.

3.2.3. Baseline systems

We compare our method with the methods of May et al. [12] and
Woodruff et al. [14]. These will be referred to as Binaural Hist and
Binaural ML respectively as mentioned in [14]. Both these methods
use GMMs to model the ITD distributions in each subband. We train
these GMMs using the same 10s of clean binaural speech used for
preparing reference IPTs. This provides 1000 frames to train each
of the 800 (25 directions × 32 subbands) GMMs for ITD. Expecta-
tion Maximization algorithm [26] with random initialization is used
for parameter estimation. AIC (Akaike Information Criterion) [27]
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Fig. 4. Localization error vs. SNR for different durations of test
speech.

and BIC (Bayesian Information Criterion) [28] are used to compute
the optimal number of Gaussian components. The lower number
between the two is chosen as the optimal number of components.
However, the maximum number of components is restricted to 20.

The trained GMMs are then used for localization. Binaural Hist
estimates the direction in each frame according to

θ̂(j) = argmax
θk

ns∑
i=1

log(P (τi,j |θk, i)), (4)

where θ̂(j) is the direction estimate of the jth frame and P (.|θk, i)
is the GMM likelihood given the direction θk and subband i. It then
generates a histogram of the frame-level DoA estimates, θ̂(j), and
picks the mode as the estimated DoA, θ̂, of the source.

Binaural ML, however, sums the likelihood over all the frames
and picks the direction with the maximum likelihood according to

θ̂ = argmax
θk

nf∑
j=1

ns∑
i=1

log(P (τi,j |θk, i)), (5)

3.3. Results and Evaluation

For evaluating the localization performance of each algorithm, we
generate 180 different instances of binaural test speech for each of
the 25 directions at every SNR (SNR is varied from -20dB to 40dB
with a step of 5dB) using AWGN. Experiments are performed using
different number of test speech frames (nf ). Average localization
error for a particular pair of SNR and nf is then evaluated using

e(SNR, nf) =

25∑
k=1

180∑
p=1

|θk − θ̂(k, p)|. (6)

where θ̂(k, s) is the angle estimated for the pth instance of test
binaural speech generated from angle θk.

When localizing speech sources, the amount of speech data
available to localize the source depends on the scenario. Ideally,
we need the algorithm to localize the source with as less data as
possible. In our experiments we test the algorithms using speech of
durations ranging from 60 ms to 1.01 s. This corresponds to nf = 5
to 100.
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Fig. 5. Localization error vs. duration of test speech for different
SNRs.

3.3.1. Experiment 1 - Localization error vs. SNR

For a fixed nf we vary the SNR and measure the average localiza-
tion accuracy at each SNR. Figure 4 shows the results for nf = 25,
50, 75, 100. It can be seen that IPT matching performs better than
the baseline methods. For SNR≥0dB IPT matching achieves zero
localization error with nf = 75, 100 and very close to zero for nf =
25, 50.
3.3.2. Experiment 2 - Localization error vs. number of frames (nf)

For a fixed SNR, we vary nf from 5 to 100 in steps of 5 and measure
the average localization accuracy at each nf . Figure 5 shows the
results for SNR = 5,10,20,35 dB. As expected, we can see that the
performance of the algorithms gets better with increase in nf . At
SNR = 5dB, IPT matching approaches zero localization error at nf
= 40. While the other methods do not approach zero error even at
nf = 100 for SNR = 5dB.

In all experimental conditions, though the GMMs were also
trained on the ITDs of clean binaural speech, it was found that IPTs
outperform GMMs.

4. CONCLUSIONS

We presented a new template based localization algorithm which
uses templates (IPTs) generated from ITDs to localize the speech
sources. Our motivation for this work was to find representations
that are invariant to different environmental scenarios rather than
training the models using multi-conditional training where the model
might fail for untrained scenarios. We observed that the location of
the patterns in clean IPTs was well preserved under additive white
Gaussian noise (AWGN). This validates the use of clean IPTs for
localization at different SNRs of AWGN. We have also presented an
O(n) method to compute IPTs which makes it computationally effi-
cient. As part of further analysis, we would like to extend the use of
IPTs to reverberant and multiple speech source scenarios.
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