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ABSTRACT
A “replay attack” involves replaying pre-recorded speech

of an enrolled speaker to bypass an automatic speaker veri-
fication system. The 2017 ASVspoof Challenge focused on
this kind of attack. In this paper, we describe our evalu-
ation work after this challenge. First, we study the effec-
tiveness of Gaussian Mixture Model (GMM) systems using
six different hand-crafted features for detecting a replay at-
tack. Second, we take a deeper look at these GMM sys-
tems and perform a frame-level analysis of log likelihoods.
Our analysis shows how system performance can depend on
a simple class-dependent cue in the dataset: initial silence
frames of zeros appear in the genuine signals but missing in
the spoofed version. Third, we show how we can fool these
systems using this cue. For example, we find the equal er-
ror rate (EER) of one GMM system dramatically rises from
14.82 to 44.44 when we add the cue to the evaluation data.
Finally, we explore whether this problem can be mitigated by
pre-processing the 2017 ASVspoof Challenge dataset.

Index Terms— Gaussian mixture model, automatic
speaker verification, spoofing detection, countermeasure,
i-vectors, CNN.

1. INTRODUCTION

Automatic Speaker Verification (ASV) [1] systems have
found increasing demand and use for voice authentication
across various sectors such as security firms, banks and
mobile phones [2]. However, ASV systems can be highly
vulnerable to spoofing attacks [3]. There is thus a growing
interest in addressing this problem [4, 5].

Four common spoofing attacks are: mimicry; text-to-
speech (TTS); voice-conversion (VC); and replay. Replay
attacks are perhaps the simplest kind, involving only the re-
playing of pre-recorded speech [3]. Fig.1 illustrates how a
replay attack can be performed using genuine audio record-
ings. The speech recorded by an ASV system during speaker
enrollment is referred as genuine speech. On the contrary,
a replayed speech is one that is obtained by playing back a
pre-recorded genuine speech to an ASV system.

The potential threat of replay attacks on standard and
state-of-the art ASV systems is highlighted in [6]. Replay
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Fig. 1. Difference between a genuine and a replayed speech.

attack detection for far-field audio recordings is studied in
[7, 8]. Authors in [9] perform higher-order spectral analysis
to capture differences between genuine and replayed speech.
The robustness of countermeasures against channel variation
and unseen replay configurations using spectral landmarks
is studied in [10]. Most recently, the 2017 ASVspoof Chal-
lenge focused on text-dependent replay attack detection “in
the wild” [11]. This challenge featured submissions from 49
teams.

In this paper, we describe our post-evaluation analysis of
our submissions to the 2017 ASVspoof challenge. We first
investigate the effectiveness of six different features for the
automatic detection of replayed speech using GMMs. We
then analyse these systems to determine what factors influ-
ence their predictions. This helps uncover a cue that the mod-
els seem to be exploiting: several zero valued samples appear
in genuine signals but are missing from the spoofed signals.
We find that this cue can make the confident correct predic-
tions of a GMM system become confident incorrect predic-
tions. We test whether this problem with the 2017 ASVspoof
Challenge dataset can be overcome by deleting the signature
(initial frames of zeros) from the test files. Finally, we in-
vestigate the effect of this on utterance-based support vector
machine and GMM systems trained using i-vectors and fea-
tures extracted from a convolutional neural network (CNN).

2. THE ASVSPOOF 2017 CHALLENGE

Given a speech utterance s, the main goal is to build a system
that determines if it is genuine speech or a recording. The
text-dependent ASVspoof 2017 database is based on the Red-
Dots corpus [12] and its replayed version, RedDots Replayed
[13]. The latter was created by replaying the RedDots through
various recording and replay configurations. Table 1 shows
how the database is divided into three parts: training, devel-
opment and evaluation. Performance is measured in terms of
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Table 1. The ASVspoof 2017 Challenge database distribution
between the training, development and evaluation subsets.

subset # spkrs # genuine # spoofed dur (hr)

train 10 1508 1508 2.22

dev 8 760 950 1.44

eval 24 1298 12922 11.95

a “threshold free” equal error rate (EER), which is an oper-
ating point in the detection error tradeoff (DET) curve where
the false acceptance and miss rejection rate are equal.

The results of this challenge are summarized in [14]. The
baseline system is a GMM trained on Constant-Q cepstral co-
efficients (CQCC) resulting an EER of 24.77% on the eval-
uation data. The best ranking system reported an EER of
6.73% on the evaluation data [15]. This system uses score-
level fusion of three systems. The first is a GMM trained us-
ing features extracted from a CNN. The second is an i-vector
based SVM system trained on linear prediction cepstral co-
efficients and the third system is an end-to-end CNN-RNN
system. The second-best performing system [16], reported an
EER of 10.85% on evaluation data, and uses score-level fu-
sion of GMM systems trained on rectangular filter cepstral co-
efficients and linear filter cepstral coefficients. It uses higher
static coefficients (30-60) augmented with delta and acceler-
ation and performs cepstral mean normalization. Our work
uses the features as in [16] but our feature parameterization
and objective are completely different.

3. FRAME-LEVEL ANTI-SPOOFING

We explore the use of six different hand-crafted features:
Mel-frequency cepstral coefficients (MFCC), inverted MFCC
(IMFCC) [17], rectangular filter cepstral coefficients (RFCC)
[18], linear filter cepstral coefficients (LFCC) [19], spectral
centroid magnitude coefficients (SCMC) [20, 21] and CQCC
[22]. We use the feature parameterization from [21]. All our
systems use 40-dimensional features obtained by concatenat-
ing 20 delta and 20 acceleration coefficients, including en-
ergy. We do not use voice activity detection or normalisation.
Our main motivation here is to study the generalization ability
of GMM systems using these features on the ASVspoof 2017
database, and then to analyse the best system.

Given a speech utterance s, each system except CQCC
extracts a series of Hamming-windowed frames of 20 ms du-
ration with 50% overlap, and transforms it into a series of
T feature vectors, X (s) := (x1, . . . ,xT ). The system then
computes a mean log-likelihood score by

Λ(s) :=
1

|X (s)|
∑

xt∈X (s)

log
p(xt|G)

p(xt|¬G)
(1)

where p(x|G) is the probability density characterizing gen-
uine speech features, and p(x|¬G) is that of spoofed speech

Table 2. Performance (EER%) of GMM systems on the de-
velopment and evaluation data.

Test IMFCC MFCC LFCC RFCC SCMC CQCC

dev 8.5 7.17 3.33 5.15 5.46 1.51

eval 17.43 26.02 17.61 16.67 14.82 17.78

features. The larger Λ(s) is, the more confidence the model
has that s is genuine.

We estimate p(x|G) and p(x|¬G) by a GMM using the
expectation maximization algorithm [23, 24] on pooled train-
ing data. We find the optimal number of components for each
GMM as: 512 for MFCC, LFCC and CQCC; 128 for IMFCC
and RFCC; and 256 for SCMC.

Table 2 shows the results of six GMM systems on both
the development and evaluation datasets. Except for the one
using MFCC, all systems outperform the 24.77% baseline
on the evaluation data [14] by a large margin. IMFCC fea-
tures give more emphasis on high frequency information than
MFCC, and seem to have more discriminability. LFCC and
RFCC systems equally emphasize all frequency bands and
have similar performance. Both CQCC and SCMC features
show good generalizability on the replayed speech detection
task, but the latter show the best result on the evaluation data.
This suggests that the distribution of energy expressed by
SCMC features is the most discriminative and generalizable
of these six kinds of features.

4. ANALYSIS

We now take a closer look at the best GMM system which
is based on SCMC features to discover the cues that influ-
ence its prediction. We look at how the log-likelihood scores
for the genuine and spoofed GMM models are distributed
across frames. We pick a genuine and spoofed example from
the development set that the system confidently and cor-
rectly classifies: “D 1000601.wav” produces Λ(s) = 14.66;
“D 1001012.wav” produces Λ(s) = −0.96. We also select
the genuine signal “D 1000300.wav” that is confidently mis-
classified with a score Λ(s) = −0.21. For easy reference
we define these signals as genuine correct, spoof correct and
genuine incorrect.

Figure 2 shows for each signal its spectrogram and
frame-wise distribution of log-likelihoods in each model.
We observe a marginal difference between genuine and
spoofed model scores across frames for genuine incorrect
and spoof correct, respectively. However, we see signifi-
cantly different behavior for genuine correct. The decision
for this signal is dominated by its first few frames. We find
that many genuine audio files in this dataset contain initial
silence frames with zeros which do not appear in the spoofed
version. As can be seen in Figure 2, the spoofed model as-
signs a very small probability to such a frame, thus pushing
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Fig. 2. Spectrograms of genuine correct, spoofed correct and genuine incorrect along with frame-level log likelihood score
difference between genuine and spoofed GMM.

Table 3. EER after adding the genuine signature to every
utterance in the development and evaluation set.

Test IMFCC MFCC LFCC RFCC SCMC CQCC

dev 34.54 33.48 34.92 28.92 46.74 2.27

eval 34.46 35.95 38.23 34.22 44.44 18.71

the decision toward the genuine class. As a consequence, this
has a large influence on the classifier decision (1).

We find that genuine correct begins with 60ms of zeros
(except four samples). Therefore, we define this 60ms seg-
ment of genuine correct as a “genuine signature” and add it
onto the beginning of the two other signals, spoofed correct
and genuine incorrect. As expected, the model now scores
both in favor of being genuine: Λ(s) = 6.85 and Λ(s) =
11.63 for spoofed correct and genuine incorrect respectively.
When we repeat this process for all test files in the develop-
ment and evaluation set and re-evaluate all our GMM sys-
tems we see dramatic increase in the EER of all systems ex-
cept for CQCC. The IMFCC system that showed 8.5% and
17.43% EER before gives 34.54% and 34.46% EER on the
development and evaluation data. We observe a similar trend
for LFCC and RFCC systems. Our best performing SCMC
system now gives the worst performance. We observe a very
small effect on the EER for CQCC (from 17.78% to 18.81%
on evaluation data) in comparison to other five features. Thus,
the CQCC features that give higher frequency resolution for
lower frequencies and a higher temporal resolution for higher
frequencies seem to be robust against such frame-level pre-
sentation attacks.

Our analysis above casts doubt on the reliability of the

Table 4. EER for two cases of pre-processing. Approach1
removes first 60ms from all the test files and re-evaluates the
performance. Approach2 is similar to Approach1 but here
we also retrain the genuine GMM model on pre-processed
training data.

System Approach1 Approach2

dev eval dev eval

IMFCC 8.78 19.18 8.66 19.10

MFCC 8.54 31.79 8.5 31.9

LFCC 4.01 21.46 4.41 21.06

RFCC 7.05 19.85 7.43 20.1

SCMC 6.4 17.98 6.39 17.7

CQCC 2.14 19.79 1.97 19.35

evaluation results of the ASVspoof Challenge: are the other
participating systems benefiting from this signature, which
will not exist “in the wild”? How prevalent is this signature in
the data? Can we improve the reliability of this challenge by
simply deleting the first 60ms of each test audio file, and us-
ing the same trained models? Table 4 shows that removing the
first 60 ms of each test audio file increases the EER of each
system tested in Table 2, but not by a large amount (Approach
1). When we remove the first 60 ms of each genuine training
and test audio file and retrain the genuine model (Approach
2), we also see a small increase in the EER of each system.
These results suggest that the signature is not very prelavent
throughout the data, but that it is prevalent enough to allow
a simple means of bypassing an otherwise good performing
replay attack spoofing detection system.
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5. UTTERANCE-LEVEL ANTI-SPOOFING

The previous models we trained and tested in the 2017
ASVspoofing challenge dataset are frame-level. Will sys-
tems using utterance-level features suffer from the same
vulnerability? We now investigate two models built using
features learned from a convolutional neural network (CNN)
and i-vectors [25]. We do not optimise these models for the
best performance.

For the CNN-based features, we use the parameteriza-
tion and network architecture of [15] for training the CNN
with the following changes. First, we use a 300x1025 (time
x frequency) log-power-normalized magnitude spectrogram
as input. Second, we use a convolutional layer in place of a
network-in-network layer. Third, we use 64 neurons in the
fully connected layer. Fourth, we replace the max-feature-
map by an exponential linear unit [26] activation and train our
network. The trained network extracts 64-dimensional fea-
ture vectors from an audio file. We train genuine and spoofed
GMM models using 8 mixtures. It should be noted that our in-
put pipeline uses a preprocessing step that ensures the small-
est value in the spectrogram is no less than 1e-7. Thus the
network will implicitly take care of the genuine signature.

We use 40-dimensional delta-acceleration SCMC features
to train a 256 mixture universal background model and total
variability matrix with 200 factors on pooled data. We extract
200-dimensional i-vectors [25] for the entire dataset. We then
use the training set i-vectors to train a linear support vector
machine (SVM) using scikit-learn [27] with its default pa-
rameters.

Table 5. EER of utterance-based anti-spoofing systems be-
fore and after injecting the genuine signature to all the test
files in the development and evaluation set.

System CNN features + GMM i-vectors+SVM

dev eval dev eval

before 9.06 32.65 21.88 20.9

after 9.24 32.69 21.81 20.5

Table 5 shows the performance of these two utterance-
level systems before and after we add the “genuine signature”
to the test files. As i-vector extraction involves stacking mean
vectors from the mixture components, the effect of the zero
valued samples is taken care of automatically and thus we
do not see any impact on performance after adding the gen-
uine signature. Similarly, CNN has a max-pooling layer that
choses a maximum from a given block of convolved input,
thus the artefacts are taken care of in the first convolutional
layer, thereby eliminating the impact of genuine signature on
the predictions. As expected, the experimental results in Ta-
ble 5 clearly indicate that systems trained on utterance-based
fixed length feature representations in the 2017 ASVspoof

Challenge dataset are resilient against such frame-level pre-
sentation attacks.

6. DISCUSSION

In our work, the SCMC-feature based GMM system showed
the best performance on ASVspoof 2017 challenge dataset.
Deeper analysis of this system led us to interesting obser-
vations. We find the presence of recording artefacts (initial
silence frames contain zeros) in some genuine audio files in
the dataset that is missing from the replayed version. As a
consequence spoofed models assign a very low likelihood to
such frames during testing. We demonstrate how knowledge
of such cues can compromise system predictions. Though
such data-intrinsic behavior may not appear in real-world sce-
narios our work shows how severe impact it can have on the
EER for frame-level GMM systems. We investigated two in-
tervention approaches to help mitigate against such manipu-
lation attacks. Comparing Table 3 and Table 4 we see that our
proposed approaches helped reduce the error-rate of all the
systems. Section 5 shows two utterance-level anti-spoofing
systems that do not suffer from such manipulation. A bigger
question we have yet to answer is what is causing the large
difference between the EER on the development and evalua-
tion datasets.

7. CONCLUSION

In this paper, we investigated the generalizability of differ-
ent features for the automatic detection of replay spoofing on
the ASVspoof 2017 challenge dataset. Our frame-level anal-
ysis shows how class-dependent cues in the dataset can lead
to the manipulation of class predictions. We find that frame-
level systems are highly vulnerable against such manipulation
attacks except the CQCC. Our proposed solutions help miti-
gate the problem effectively. Further, as a proof-of-concept
we showed that utterance-level feature-based systems are re-
silient to such manipulations. Our future work aims to per-
form more in-depth analysis on the dataset and investigate
neural network architectures for learning robust features for
replay detection.
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parison of features for synthetic speech detection,” in
Interspeech 2015, 2015.

[22] M. Todisco, H. Delgado, and N. Evans, “A new feature
for automatic speaker verification anti-spoofing: Con-
stant Q Cepstral Coefficients,” 2016.

[23] C. M. Bishop, “Pattern recognition and machine learn-
ing,” 2006.

[24] S. O. Sadjadi et al., “MSR Identity Toolbox v1.0:
A matlab toolbox for speaker recognition research,”
Speech and Language Processing Technical Committee
Newsletter, 2013.

[25] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and
P. Ouellet, “Front-end factor analysis for speaker ver-
ification,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, no. 4, pp. 788–798, May
2011.

[26] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
accurate deep network learning by exponential linear
units (elus),” CoRR, vol. abs/1511.07289, 2015.

[27] F. Pedregosa et al., “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol.
12, pp. 2825–2830, 2011.

5163


