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ABSTRACT

We propose a semi-supervised learning method to improve
classification performance in scenarios with limited labeled
data. We employ adaptation strategies such as entropy-
filtering and self-training, and show that our method achieves
up to 17.2% relative improvement in UAR for a multi-class
problem. We apply our method to two different tasks: speaker
clustering for adult-child interactions during autism assess-
ment sessions, and a variation of the language identification
task (LID). We show that in both tasks our method improves
classification accuracy while using lesser training data than
the baseline and demonstrate the robustness of our setup
to the degree of adaptation by controlling the threshold on
uncertainty of classification.

Index Terms— Semi-supervised learning, i-vectors,
speaker clustering, language identification

1. INTRODUCTION AND PREVIOUS WORK

Semi-supervised algorithms often utilize a small amount of
labeled data in combination with a (usually) larger set of un-
labeled data to improve learning. They are useful in sce-
narios where obtaining labeled data can be expensive, time-
consuming and requires skilled expertise. Various strategies
for semi-supervised methods have been developed, including
the use of generative models [1, 2], self-training [3] and graph
based [4] methods. Each variant of semi-supervised learning
places different assumptions on the distribution of unlabeled
data.

In this paper, we propose adaptation strategies in a semi-
supervised manner to improve classification performance in
speech processing scenarios with limited labeled data. We
illustrate the importance of adapting the classifier to variabil-
ities localized within a recording session of audio conditions,
a commonly encountered scenario in real-life interaction ses-
sions of diagnostic or therapeutic nature. To demonstrate the
validity of our method, we choose two different applications:
speaker clustering and spoken language identification (LID).

Speaker clustering, which is the process of identifying
speaker identities corresponding to a set of speaker homo-
geneous segments, forms a vital component of many speech
processing applications (e.g. speaker diarization). We per-
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form speaker clustering on ADOS (Autism Diagnostic Ob-
servation Schedule) sessions [5], which are semi-structured
interactions of diagnostic nature between a trained clinician
and a child suspected to be on the autism spectrum. Next, we
look at a variation of the spoken language identification task
[6, 7] on the CALLFRIEND corpus. Our task differs from tra-
ditional LID as follows: instead of using separate training and
validation corpora which are typically larger than the evalu-
ation data, we label one utterance in each session for train-
ing purposes. Both tasks include session-specific variabilities
arising from factors such as speaker’s gender, age, linguistic
capabilities and background noise.

In both tasks, we implement semi-supervised classifica-
tion as a two-step process. First, a ‘global’ model is built
using per-speaker ‘enrollment’ (henceforth referred to as ‘la-
beled’) data from all available sessions. Next, classification
is performed within a session by adapting the global model to
the session’s data. We employ different adaptation strategies
during this step. First we introduce an entropy-based filter-
ing step to identify sessions with ‘similar’ labeled segments,
which are then used to train a session specific classifier. Next,
we classify the unlabeled segments using self-training in an
iterative manner by classifying those with high confidence
scores and retraining our classifier. This method (bootstrap-
ping) where the classifier trains on its own predictions has
been used in natural language processing and computer vision
[8, 9]. Finally, we use a distance-based assignment for the re-
maining segments deemed uncertain by self-training. This
way, we adapt the ‘global’ classifier to each session’s vari-
ability during the classification process. We analyze the effect
of each of these strategies, both individually and in combina-
tion, and propose a system that enhances classification per-
formance by incorporating all of them. Finally, we study the
robustness of our framework with respect to the uncertainty
threshold hyper-parameter.

The rest of the paper is organized as follows: Section 2
defines the limited labeled data scenario and discusses the
components of our method. Section 3 describes the datasets
we used, the experimental setup, and presents the results ob-
tained using the proposed adaptation strategies. Conclusions
and future work directions are discussed in Section 4.

2. METHODOLOGY
In speech processing applications we often encounter scenar-
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ios where the amount of labeled data is limited and annota-
tions are expensive. We designed the proposed method to ad-
dress such cases by carefully selecting “high confidence” ex-
amples, and apply self-training. In our method, each record-
ing session is divided into speaker homogeneous segments,
and we assume that a single data sample (segment in our case)
per class is labeled in every session. We perform classifica-
tion at the segment level using i-vectors [10] in all our exper-
iments.

General Formulation

Consider N sessions in the corpus with up to K classes; i.e.,
a session i will contain ki classes such that ki ∈ [2,K]. Let
{xij} j ∈ Ji denote the set of all segments within session
i, i.e, the cardinality of Ji is the number of segments in ses-
sion i. Also let {xij′} j′ ∈ J ′i represent the set of labeled
segments in session i (one labeled segment for each class).
The objective now becomes to classify the unlabeled data
{xij} ∀j 6∈ J ′i . In all our experiments, we first build a ‘global’
supervised classifier (referred to as S0) using only the labeled
data across all sessions, and perform unsupervised adaptation
to create another classifier (Si) specific to session i.

2.1. Entropy-based filtering

The global classifier S0 is trained using the labeled utterances
from all sessions. In order to avoid over-fitting, we do not aim
for perfect classification accuracy on the training set. Instead,
if the labeled segments of a session are incorrectly classified
by S0, we consider this as an indicator that the classification
performance of S0 on unlabeled segments of that session is
also likely to be poor.

In other words, confidence of classification for the labeled
example {xCi }, C ∈ [1,Ki] from session i can indicate the
suitability of S0 for class C within the ith session. We con-
trol the number of labeled examples to retain from each class
while classifying within session i. Using the class posteriors
for labeled examples obtained using S0, we define an entropy-
inspired score (after Shannon’s entropy [11]) for each labeled
example as follows:

eCi =



∑
x∈(pC

i ,1−pC
i )

x log(x) if pCi >= 0.5

2log(0.5)−
∑

x∈(pC
i ,1−pC

i )

x log(x) if pCi < 0.5
(1)

where pCi is the posterior probability from S0 for xCi . The
number of labeled segments belonging to class C from other
sessions to retain while classifying session i is:

NC
i = Nee

C
i

The closest NC
i segments are selected using a distance mea-

sure. Note that the entropy score in (1) is asymmetric about
pCi = 0.5, unlike regular entropy. This ensures that eCi is

monotonically increasing with pCi . This behavior is prefer-
able since a confident and correct classification of xCi should
favor retaining most of the data used in S0, and vice-versa.
Further, the formulation in (1) ensures that the minimum frac-
tion of labeled data that will be retained is 0.25. This natural
regularization guarantees that we do not remove all the data
from any class before classification.

2.2. Self-training (Bootstrapping)

Since S0 may not necessarily capture the session character-
istics from all sessions, we classify in an iterative manner
while adapting to the session’s data. At every iteration, we
augment the set of labeled examples by selecting the most
confident unlabeled segment (using the posterior probability)
along with the label predicted using the current model. The
model is then re-trained at the end of each iteration. The al-
gorithm is presented as Algorithm 1.

Algorithm 1 Iterative bootstrapping

1: Input

• S0: Global classifier
• Xtrain: Labeled features, Ytrain: Labels
• {xij}, j 6∈ J ′i : Unlabeled segments from session i
• T : Uncertainty threshold

2: while All segments not classified & max(pCj ) > T do
3: Obtain posterior probabilities pCj using S0 for unla-

beled data
4: [j′′, C ′′] = argmax

j,C
(pCj )

5: Xtrain.append(xij′′)
6: Ytrain.append(C

′′)
7: end while

2.3. Classification of uncertain segments

Self-training is known to suffer in the later iterations, as con-
fidence of the most certain unlabeled segment keeps decreas-
ing. To avoid this, we use the posterior probabilities from Si

to help identify uncertain segments and fall back to a simpler
classification method for such examples. While it is straight-
forward to use the posterior probability as an uncertainty met-
ric for two classes, we use the entropy of the posterior in
the case of multiple classes. Cosine-distance has been used
for score computation with i-vectors for many applications
[10, 12, 13]. Hence, we classify the uncertain segments by
assigning them to the nearest labeled segment based on co-
sine similarity.

3. EXPERIMENTS AND RESULTS
We applied our method on two different tasks: speaker clus-
tering on the ADOS dataset and LID–like task on CALL-
FRIEND. In the latter task, we demonstrate the ability of our
methods to generalize to multiple classes and replicate our
findings using a publicly available corpora 1. Following, we

1https://catalog.ldc.upenn.edu/
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describe the datasets and experimental setup.

3.1. Datasets

We use 269 sessions from Module 3 of the ADOS which is a
spoken diagnostic interaction between a clinician and a child.
The sessions include the Emotions subtask, where the child is
asked to identify the causes and effects of various emotions in
them; and the Social Difficulties & Annoyance subtask, where
various social problems at home and school are discussed.
The sessions cover children from ages 4 to 13 years (Dura-
tion: µ = 219s, σ = 89s). We define speaker homogeneous
segments within an utterance boundary, which are obtained
using the ground truth speech transcripts. For both the child
and adult, we choose the longest utterance (Duration: µ =
7.01s, σ = 1.98s) from each session as the labeled data so as
to ensure each speaker is represented sufficiently. In total, we
have 538 labeled segments and 10,284 unlabeled segments.
We use a leave-one-session out cross validation scheme where
one session is used for evaluation and the rest for training the
GMM-UBM (Gaussian mixture model-universal background
model) and i-vector extractor. This is repeated so as to cover
every session.

For the next task, we use 13 languages from the CALL-
FRIEND corpus, which consists of unscripted telephone con-
versations between native speakers of the particular language.
We use Japanese, Korean, Mandarin (Mainland & Taiwan
dialects), Spanish (Carribean & Non-Carribean), Tamil and
Vietnamese to train the GMM-UBM and i-vector extractor,
and Arabic, Farsi, French, German and Hindi for evaluation
purposes. For each language, we pool data from the train, dev
and eval subsets resulting on an average of 118 speakers per
language. We use an energy based voiced activity detector
from Kaldi [14] to remove silence regions since the conversa-
tions were recorded with low levels of background noise. A
segment is defined as a contiguous speech utterance of 2 sec-
onds in duration. We formulate the task similar to spoken lan-
guage identification by creating synthetic sessions which in-
cludes speech segments from speakers of different languages,
while ensuring that each language within a session is repre-
sented by only one speaker. For example, a session can in-
clude segments from speaker 1 of French, speaker 10 of Ger-
man and speaker 100 of Farsi. The number of languages per
session is varied from 2 to 5, and 200 unique sessions are cre-
ated for each of them. The segment to be labeled from each
language is randomly chosen from within that conversation.

3.2. System selection using baseline performance

We define a baseline classifier that does not perform session-
level adaptation., we use the global classifier S0 to classify all
the sessions in the corpus. We use support vector machines
for both S0 and session specific classifiers in this work, since
they are a popular choice for supervised classification algo-
rithms. We use the baseline performance to optimize the num-
ber of Gaussian mixtures while estimating the GMM-UBM,
and the i-vector dimension. In the case of LID, we also decide
our front-end feature representation between MFCC and SDC

(Shifted Delta Cepstra) since the latter has been used recently
due to its ability to capture temporal information [15]. While
we use the five evaluation languages for parameter optimiza-
tion in CALLFRIEND, in ADOS we resort to 20-fold cross
validation since a leave-one-session out would be computa-
tionally expensive. We also experiment with smaller num-
ber of GMM mixtures and i-vector dimensions in addition to
commonly used values in the case of ADOS considering the
size of the corpus.

We use the unweighted average recall (UAR) as our per-
formance metric for each session, which takes into account
class imbalances [16]. We report the results as UAR averaged
across sessions. The optimal combinations of i-vector dimen-
sion and number of UBM mixtures were found to be (400 and
2048) and (20 and 256) for the case of CALLFRIEND and
ADOS corpora respectively. These parameter combinations
are used in the rest of this work.

3.3. Session-level adaptation strategies

We measure the effect of each of the adaptation strategies on
classification performance. We also present all possible com-
binations of the strategies in Table 1, and study their contri-
butions.

Table 1: Mean UAR for speaker clustering on ADOS and LID
on CALLFRIEND. Results are reported separately for each
number of languages (2-5) on CALLFRIEND. (E: Entropy-
based filtering, B: Boostrapping, D: Cosine-Distance based
assignment for uncertain segments)

Method ADOS CALLFRIEND
2 3 4 5

Baseline 87.62 68.68 55.35 47.07 41.41
E 89.36 73.13 60.58 52.56 47.94
B 88.23 69.83 56.18 47.64 42.38
D 92.25 71.23 55.11 44.99 38.66

E+D 92.90 74.51 61.68 53.09 48.62
E+B 89.87 75.28 60.57 52.30 46.64
B+D 92.25 70.58 56.34 47.51 42.06

E+D+B 92.91 76.81 61.32 52.69 46.98

We observe a consistent increase in mean UAR across the
corpora and across different number of languages in the case
of LID. Furthermore, the baseline performance decreases as
the number of classes grows.

Classifying uncertain segments using cosine distance (D)
enhances classification accuracy when the number of classes
in small, e.g. ADOS and up to 3 languages in LID, but the per-
formance drops otherwise. This happens since labeled exam-
ples from the same class have different representations across
different sessions. The entropy-based filtering of labeled data
(E) gives the largest gains in performance out of all the strate-
gies we employed. In contrast to distance-based classifica-
tion (D), performance gains are proportional to the number of
classes., in the 2 language scenario we observe a performance
boost of 6.48% while we have a 15.77% increase on the 5
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Fig. 1: Effect of threshold for determining uncertain segments on Mean UAR (in %). Presented in combination with entropy-
filtering and bootstrapping for each corpora.

language case. Entropy-filtering reduces the amount of la-
beled segments that are used within a session, which suggests
that simply adding more data does not necessarily imply bet-
ter classifiers. It is more beneficial to retain labeled data from
other sessions that are similar (in terms of cosine distance) to
the labeled data from the current session.

Bootstrapping by itself provides only moderate gains in
performance. The performance drops marginally for larger
number of classes when bootstrapping is combined with
distance-based classification, which could be explained in
the same way as distance-based classification (D) alone.
However, combining bootstrapping with entropy-filtering
decreases performance for larger number of classes when
compared to entropy-filtering alone. We expect that the
baseline performance (which serves as the initial step) in-
fluences the bootstrap strategy, since the latter is of iterative
nature. Overall, the best clustering performance is obtained
using a combination of all adaptation methods (E+B+D) for
lower number of classes, while entropy-filtering followed by
distance-based classification (E+D) is the best configuration
in the case of large number of classes.

3.4. Dependence on uncertainty threshold

In the last set of our experiments, we look at how the param-
eter for uncertainty threshold influences the overall perfor-
mance of our scheme. The threshold determines the amount
of data that will be classified using the distance measure, as
well as the amount of labeled data used while adapting S0.

We experimented with values between 0.5 (all examples
are deemed certain by the classifier) and 0.9 (most examples
are considered uncertain) with a step of 0.1, and present the
results in Figure 1. We observe that in most cases the perfor-
mance increases as the threshold value is increased towards
0.9. This is expected, since we classify only a small, but
confident subset of the data with the supervised classifier and
hence minimize the errors from uncertain examples. How-
ever, the dependence is not uniform across different combi-
nations involving entropy-filtering and bootstrapping. Com-
bining cosine-distance based classification with bootstrapping
(B+D) makes the system highly dependent on the threshold,
suggesting that bootstrapping accumulates errors at each iter-
ation as we continue classifying segments with lower confi-
dence scores. This effect is somewhat ameliorated with en-
tropy filtering (E+B+D, E+D) especially as the number of

languages increases. Since the performance is monotonically
increasing with the threshold in most cases, we further fine
tuned the threshold between 0.9 and 1.0 (all examples consid-
ered uncertain) and present the results for two cases - ADOS
and CALLFRIEND with 3 languages. From Figure 2, we
observe that there exists a clear optimal threshold for ADOS
while the performance saturates for most cases in the case of
CALLFRIEND. Hence, while a large threshold favors better
performance in general, further inferences might be corpus-
specific.
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Fig. 2: Classification performance against fine tuned uncer-
tainty threshold for ADOS and CALLFRIEND: 3 languages.
The abscissa has been scaled non-linearly for better visualiza-
tion

4. CONCLUSIONS
In this work, we propose adaptation strategies to improve
clustering performance in a semi-supervised manner for
speech processing applications. Specifically, we build a
global classifier across different recording sessions and adapt
it to session-specific variabilities using entropy-filtering and
bootstrapping in an iterative manner. We use the reliability of
classification to terminate the adaptation and switch to a sim-
ple distance-based assignment. We find that entropy-filtering
provides the largest gains as a standalone method while a
combination of methods provides the best classification per-
formance. Further, selecting a small but confident subset of
labeled data using the uncertainty threshold generally favors
classification over using a large number of uncertain exam-
ples. In the next step, we would like to automatically select
labeled segments within an active learning setup, in order to
make this methodology fully unsupervised. We would also
like to investigate different non-linear functional forms in
place of the entropy for selecting the labeled examples in
the global model, and analyze the robustness of adaptation
strategies, especially entropy-filtering to noise conditions.
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