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ABSTRACT

A wide range of research disciplines are deeply interested in
the measurement of animal emotions, including evolutionary
zoology, affective neuroscience and comparative psychology.
However, only a few studies have investigated the effect of
phenomena such as emotion on the acoustic parameters of
(non-human) mammalian species. In this contribution, we
explore if commonly used affective computing-based acous-
tic feature sets can be used to classify either the context, the
emotion, or predict the emotional intensity of dog bark se-
quences. This comparison study includes an in-depth analysis
of obtainable classification performances. Results presented
indicate that the tested feature representations are suitable for
the proposed recognition tasks. Of particular note are results
that demonstrate machine learning-based acoustic analysis can
achieve above human level performance when classifying the
context of a dog bark.

Index Terms— affective biology, canine emotion, affec-
tive computing, acoustic analysis, bag-of-audio-words

1. INTRODUCTION

Affective biology, the measurement of animal emotions, is
starting to gain considerable interest in a wide range of re-
search disciplines including evolutionary zoology, affective
neuroscience and comparative psychology [1]. To date, very
little research attention has focused on using affective comput-
ing techniques to recognise emotions in mammals other than
humans. However, such approaches – if successful – would be
of great benefit to veterinarian and animal welfare science.

Speech-based emotion detection is a well-established and
mature area of research within affective computing. Many of
the concepts that underlie this research field are transferable
to other mammals. Firstly, human vocalisations share many
similar aspects with mammal vocalisations in terms of acoustic,
physiology and neural control [2]. All mammals generate their
primary acoustic signal at a source, typically rapid pulses of air,
generated in the lungs, being forced through the vocal folds.

The combined action of the vocal tract and the articulators
filters this source signal to produce vocalisations.

Further, all mammals have similar neurophysiological re-
sponses to emotional stimuli, e. g., changes in the brain activity
or in the heart rate [1]. Accordingly, changes in the emotional
state of an animal should effect the muscular systems used
to control the vocal apparatus altering the acoustic properties
of the vocalisation [1]. Therefore, the work presented in this
paper explores if acoustic feature representations, designed
and developed for human-based affective computing purposes,
can be used to recognise context and emotions in dog barks.

1.1. Related Work

Compared to other vocalisations such as growling or howling,
dog barks are highly variable and are used in various situa-
tions such as care or contact solicitation [3]. Research in the
literature reveals that in certain contexts, barks have distinct
acoustic properties [4, 5, 6]. For example, results present in [4]
indicate that barks elicited from a disturbance situation had
proportionally more energy at lower frequencies, while barks
elicited from play have a harmonically rich structure.

Perception tests reveal that human listeners have the ability
to categorise dog barks and growls accurately in regards to
the original recording situation and associate them with an
appropriate emotionality [6, 7, 8, 9]. In these tests, acoustic
parameters including tonality, pitch and inter-bark time inter-
vals had a strong effect on how human listeners described the
emotionality of these dog vocalisations [6]. In another set
of perception tests [10], low pitched barks were described as
aggressive, while tonal and high pitched barks were scored as
either fearful or desperate.

Initial machine learning analysis has shown that acoustic
descriptors including spectral roll off, spectral flatness and
formant features have shown to be suitable for classifying bark
context achieving a classification efficiency of 43% [5]. These
findings all suggest that dog barks have bark-specific acoustic
features; similar findings have also been reported in several
other social mammal species [11, 12].
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1.2. Contributions of this Work

This paper explores, if acoustic feature representations, com-
monly used in affective computing, can be used to recog-
nise the context and perceived emotion of dog barks. While
previous work has focused on the recognition of single bark
sounds [5], this work focuses on the recognition of sequences
of dog barks and performs three experiments: (i) classifying
the context, (ii) classifying the perceived emotion, (iii) predict-
ing the perceived emotional intensity.

As we are classifying bark sequences, we test the suitabil-
ity of feature representations which extract supra-segmental
information from low-level frame wise features. Namely, the
small but tailor made for emotion recognition extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) [13]; the
large brute-force Interspeech Computational Paralinguistics
Challenge features set (COMPARE) [14]; and a range of Bag-
of-Audio-Words (BoAW) representations [15]. These feature
representations can be considered state-of-the-art for human
emotion detection [13, 15, 16].

Given that results presented in the literature demonstrate
that humans apply similar rules when processing the emotion
of both dogs’ or humans’ vocalisations [17], and the simi-
larities in the anatomical nature and structure of human and
dog vocal apparatus, we speculate our chosen feature repre-
sentations should be suitable for recognising the context or
perceived emotion in dog barks.

2. EMOTIONAL DOG CORPUS

The Emotional Dog Corpus (EmoDog) contains vocalisations –
bark sequences – of dogs recorded in different standardised sit-
uations. For consistency, only the barks of the Mudi, a herding
dog breed from Hungary, were collected for this corpus. The
working style of this breed is characterised by its extensive
use of barking. A total of 226 bark sequences were recorded
from 12 different Mudi dogs. The average length of the bark
sequences is 41.8 seconds with a standard deviation of 42.8
seconds.

The barks were obtained from one of seven different con-
textual situations as follows: (i) Alone: The owner tied the
dog to a tree with a leash and walked out of sight of the dog;
(ii) Ball: The owner held a ball at a height of approximately
1.5 m in front of the dog; (iii) Fight: A professional dog trainer
encouraged the dog to bark aggressively and to bite a padded
glove on the trainer’s arm whilst the owner kept the dog on a
leash; (iv) Food: The owner provided the dog with food; (v)
Play: The owner played a typical game such as chasing or
wrestling; (vi) Stranger: An experimenter appeared outside
the home of the dog in the absence of the owner; (vii) Walk:
The owner behaved as if they were preparing to take the dog
for a walk. The distribution of the context situations can be
seen in Table 1.

Table 1. Distribution of the different contextual situations
used to generate all barks in the EmoDog Corpus.

Alone Ball Fight Food Play Stranger Walk
18 50 22 41 22 44 29

2.1. Annotations

In earlier work, six professional dog trainers assigned emotions
to the bark sequences [6, 10, 5]. The annotators were asked
to rate each bark in terms of either Aggression, Fear, Despair,
Fun, or Happiness on a scale from 1 to 5. Taking the mean
of these score, we are able to assign an intensity score per
emotion to each of the bark sequences (cf. Table 2). Each bark
sequence was then assigned a single emotion label, using that
sequences’ maximum mean annotation score.

To gain perspective into how well our systems performed
contextual classification, we conducted human classification
tests through our gamified crowdsourcing platform iHEARu-
PLAY1 [18]. Each listener was asked to classify each sequence
in terms of the reason for barking i. e., Alone, Ball, Fight, Food,
Play, Stranger, or Walk. The listeners had the possibility to
repeat listening to each sequence as often as required, before
submitting their final answer. Overall, five listeners labelled
the 227 bark sequences for the reason for barking.

3. EXPERIMENTAL SETTINGS

3.1. Acoustic Feature Sets

We investigate two different acoustic feature sets – the 88 di-
mensional extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [13] and the 6373 Interspeech Computational
Paralinguistics Challenge (COMPARE) features set [19] – for
the efficacy in our classification and prediction tests both of
which have consistently shown to capture emotion information
in human speech [19, 20, 21, 22, 23, 24].

Given results in the literature showing that prosodic and
spectral cues may both be important when analysing dog
barks [4, 6, 5], we also test two subsets of the COMPARE
features separately: (i) COMPARE prosodic features only
(COMPARE Pros.), and (ii) COMPARE spectral and cepstral
features only (COMPARE Spec.).

3.2. Bag-of-Audio-Words

We also test the Bag-of-Audio-Words (BoAW) paradigm [15],
that has been shown to be suitable for a range of speech-based
emotion recognition tasks [20, 25].

The BoAW representations were formed using our open-
source openXBOW toolkit [15]. An extensive iterative
search was performed to identify the codebook size (Cs ∈
{10, 20, 50, 100, 200, 500, 1 k}) and number of assignments

1https://www.ihearu-play.eu
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Table 2. Distribution of the emotion intensities in the EmoDog
Corpus in terms of the minimum (Min.), mean, maximum
(Max.) and standard Deviation (Std. Dev.); also shown are
the number of sequences (# Seq.) to each of the emotion
categories. The emotion scores were assigned by six expert
annotators.

Agg. Dsp. Fear Fun Hap.
Min. 0.50 0.33 0.33 0.67 0.50
Mean 2.76 3.08 2.60 2.50 2.51
Max. 5.00 5.00 5.00 4.83 4.83
Std. Dev. 1.01 0.82 0.92 0.97 0.94
# Seq. 71 16 14 52 29

(Na ∈ {10, 20, 50, 100, 200, 500}), with random assignments
being used to generate all codebooks.

3.3. Classification and Prediction Setup

Both the EGEMAPS and COMPARE feature sets, as well
as all LLDs used in our BoAW test, were extracted using
the openSMILE feature extraction toolkit [19]. Six different
LLDs feature sets were used in conjunction with BoAW: (i)
Mel Frequency Cepstral Coefficients (BoAW MFCC) 1 – 12
and the logarithmic signal energy, extracted using 25 ms long
frames, with a frame rate of 10 ms, and a preemphasis filter
(k = 0.97); (ii) the same set of MFCCs appended with the cor-
responding first and second order derivative features (BoAW
MFCC + deltas); (iii) EGEMAPS LLDS (BoAW EGEMAPS);
(iv) COMPARE LLDs (BoAW COMPARE); (v) COMPARE
Prosodic LLDs (BoAW COMPARE Pros.); and, (vi) COM-
PARE Spectral and Cepstral LLDs (BoAW COMPARE Spec.).

All classification tests were performed with a linear Sup-
port Vector Machine (SVM) implemented using the open-
source LIBLINEAR toolkit [26], with the cost parameter being
tuned separately for each experiment using a search space of
C ∈ {1, 2, 5}·10−6 to {1, 2, 5}·102. All prediction tests were
performed using an epsilon–Support Vector Regression (SVR)
implemented via the open-source LIBSVM toolkit [27]. A grid
search was undertaken to find the optimal C (same range as
for the classification tests) and an epsilon (ε ∈ {1} · 10−6 to
{1} · 102) parameters.

3.4. Evaluation

As the classification evaluation measurement of the perfor-
mance of the different feature sets, we employed a leave-
one-dog-out cross fold validation scheme and all results are
reported in terms of Unweighed Average Recall (UAR). The
motivation to consider UAR rather than other measures is that
it can better reflect the overall accuracy in the presence of
imbalanced classes as well as for more than two classes, and
is widely used for emotion, and even other computational par-
alinguistics recognition tasks [14, 28]. All prediction tests

Table 3. Comparison of different acoustic feature representa-
tions, known to capture human emotions, for classifying either
the context (7 classes) or the perceived emotion (5 classes)
of dog bark sequences. All results are given in terms of Un-
weighed Average Recall (UAR).

% UAR Context Emotion
EGEMAPS 24.4 28.5
COMPARE 31.3 25.7
COMPARE Pros. 30.0 27.5
COMPARE Spec. 32.9 25.8
BoAW MFCC 19.2 24.4
BoAW MFCC + deltas 21.1 23.8
BoAW EGEMAPS 19.1 25.1
BoAW COMPARE 16.7 21.9
BoAW COMPARE Pros. 15.9 22.9
BoAW COMPARE Spec. 16.6 21.8
Human Performance 23.7 –
Chance 14.3 20.0

are evaluated with respect to the Root Mean Square Error
(RMSE).

4. RESULTS AND DISCUSSION

4.1. Context Classification

For classifying Bark Context, we calculated the human perfor-
mance as a fusion of the five (crowdsourced) annotators which
achieved a UAR of 23.7% (cf. Table 3). The EGEMAPS and
COMPARE feature sets were able to match or outperform the
annotators at this task. The COMPARE spectral and cepstral
features gave the strongest performance with a UAR of 32.9%.
This matches with results in [4, 5], which showed that barks
elicited from different contextual situations have different fre-
quency distributions.

For the BoAW representation, the best contextual classifi-
cation was achieved with a UAR of 21.1% (cf. Table 3), using
BoAW MFCC + deltas features (Cs = 1000, Na = 1). The
weaker performance of this representation compared to the
other feature sets was surprising. We speculate this might
be due to the distribution of acoustic events – as captured by
COMPARE functionals – containing more relevant contextual
information compared to the ‘frequency’ of audio events as
modelled by BoAW.

4.2. Perceived Emotion Classification

When classifying the emotions of the dog barks, the
EGEMAPS feature set gave the best performance with
28.5% UAR (cf. Table 3). This result is not surprising; the
EGEMAPS feature set was explicitly designed to have a high
level of robustness for human emotion recognition [13]. The
COMPARE feature sets performs slightly below EGEMAPS
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Table 4. Comparison of different acoustic feature representations, known to capture human emotions, for predicting the intensity
of five different emotions, namely Agg(ression), Des(pair), Fear, Fun and Hap(piness), in dog bark sequences. All results are
given in terms of Root Mean Square Error (RMSE) where the emotion intensity scores ranged 1-5.

RMSE Agg. Des. Fear Fun Hap.
EGEMAPS .888 .832 .891 .876 .882
COMPARE .885 .834 .890 .928 .920
COMPARE (Pros.) .855 .837 .902 .954 .932
COMPARE (Spec.) .891 .833 .896 .937 .922
BoAW MFCC .847 .814 .907 .925 .922
BoAW MFCC + deltas .869 .819 .905 .931 .924
BoAW EGEMAPS LLDs .910 .853 .937 .957 .929
BoAW COMPARE LLDs .987 .818 .927 .982 .944
BoAW COMPARE Pros. LLDs .918 .775 .877 .977 .922
BoAW COMPARE Spec. LLDs .988 .815 .927 .982 .944

obtaining a UAR of 25.7%. It can also be observed that the
splitting of the feature set into prosodic and spectral features
does not bring any advantages for the emotion task compared
to the content task; similar observations have been made for hu-
mans where the combination of different acoustic feature types
is used to capture the effects of emotion in speech [19, 13].

The BoAW representations are more competitive for the
emotion classification task (cf. Table 3); the best result
achieved was an UAR 25.1% found with EGEMAPS LLDs
(Cs = 1000, Na = 1). Similar results have also been ob-
served in human emotion classification [20], where COMPARE
features outperformed a BoAW representation in a 5-class emo-
tion classification paradigm.

4.3. Perceived Emotional Intensity
When predicting the intensity of aggression, despair, fear, fun,
and happiness in the bark sequences (cf. Table 4), the results
indicate that using our chosen feature representation, the (per-
ceived) intensity of the negative emotion aggression, despair
and fear, is easier to estimate than in the positive emotions
fun and happiness. As in the emotion classification tests, the
EGEMAPS feature set performs very well at this task achiev-
ing the lowest RMSE in the comparison of all feature sets
for fun (.876, C = 10) and for happiness (.882, C = 5). As
already stated, EGEMAPS was specifically designed for (hu-
man) emotion recognition, therefore, the strong results on all
bark emotion tasks are not surprising.

We also applied the BoAW paradigms to this emotional
intensity prediction task (cf. Table 4). Observing these results
we can see that BoAW MFCC (C = 50, Cs = 100, Na =
5) performed with a RMSE of .847, which is best for the
aggression task and achieved the best result for this emotion
class. This BoAW MFCC setup has shown state-of-the-art
performance for arousal tracking in human speech [25]. The
strong aggression result presented matches with this finding;
high aggression is associated with high arousal.

For the emotion classes of despair and fun, the best results

were obtained using the BoAW COMPARE Prosodic LLDs
(cf. Table 4), resulting in .775 RMSE for despair (C = 200,
Cs = 100, Na = 50) and .877 for fear (C = 20, Cs = 200,
Na = 50). This result matches with previous results presented
in [6, 10], showing prosodic features including tonality, pitch
and inter-bark time intervals had a strong effect on how human
listeners described the emotionality of these dog vocalisations.

5. CONCLUSION AND OUTLOOK
We investigated if commonly used affective computing based
acoustic feature sets can be used to classify either the context,
the perceived emotion, or the intensity of a dog bark. Our
results show that acoustic feature sets purposely designed to
capture human emotions can be used to classify these three
tasks accordingly. The strong performance of the EGEMAPS
features set in the emotion classification tasks was to be ex-
pected. This feature set was hand crafted especially to capture
emotion information in human vocalisations [13]. All achieved
results indicate the suitability of human based features for char-
acterising dog barks. This result supports theories that due
to similarities in emotion responses and vocalisation appara-
tus mammalian emotional changes produce similar acoustics
effects across mammals [1, 2].

Future work will include testing alternative feature repre-
sentation and more advanced machine learning approaches,
in particular long-short-term-memory based Recurrent Neural
Networks. We will also consider transfer learning analyses
including human emotional data to gain further insights into
this research field of dog vocalisations.
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