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ABSTRACT

The generation of natural and expressive prosodic con-
tours is an important component of a text-to-speech (TTS)
system which, in most classical architectures, relies on the ex-
istence of a text-analysis processor that can extract prosody-
predictive features and pass them to a statistical learning
model. These features can range from basic properties of
the input string to rich high-level features which may not be
always available when developing a TTS system in a new
language with sparse computational resources. In this work
we investigate how the prosody model of a speech-synthesis
system performs as a function of different predictive feature
sets that assume access to a certain amount of rich resources.
We investigate, using objective metrics, the effect of relaxing
the assumptions on input representations for prosody predic-
tion for 5 languages, and evaluate the perceptual implications
for US English.

Index Terms— prosody prediction, speech synthesis, low
resources

1. INTRODUCTION

The generation of appropriate prosodic contours is one of the
fundamental tasks that a Text-to-Speech (TTS) system needs
to address to produce outputs that are perceived as natural,
expressive, and consistent with the text. In classical unit-
selection and parametric architectures, a natural-language text
processor is responsible for analyzing an input string, and ex-
tracting a variety of predictors that can be given to a statisti-
cal model to learn (during training) and later generate (at run
time) the necessary prosodic targets required by the architec-
ture in question.

The extraction of these textual, prosody-predictive fea-
tures is, to a large extent, a language-dependent task which
incorporates knowledge about the factors that help shape
the prosodic realization of utterances in the target language.
Such knowledge can be incorporated into a system explicitly
by a domain expert crafting linguistic rules, or automatically
learned in a statistical framework from a variety of resources
carrying linguistic knowledge. Examples of such resources

include lexica annotated with phonetic baseforms and part-of-
speech (POS) tags, syntactical or semantical treebanks, and
corpora bearing symbolic prosodic annotations like promi-
nence and phrasing.

The development of a TTS system in a new language for
which no text-analysis processor is available will be initially
constrained by the availability of these resources and/or ac-
cess to linguistic knowledge. We would like to investigate,
therefore, the question of how a prosody model performs as
a function of variable predictive feature sets that assume ac-
cess to a certain amount of rich resources (Section 2). This
notion of resource-richness does not necessarily relate to the
amount of textual data available in that language, even in an
electronic format. A language may have good repositories
of textual data, but poorly understood or studied intonational
systems, and few or non-existing computational resources of
the type already mentioned, both of which would hinder the
development of rich linguistic features upon which to build
prosody models. In this work, we investigate this topic by
looking at the predictive ability of increasingly rich feature
sets in various languages in the context of different machine-
learning models for this task.

Interest in the utility of specific linguistic features to pre-
dict prosody has remained a topic relevant to speech syn-
thesis in relatively high-resource languages for many years.
Recently, more research attention has been given to speech
synthesis in low-resource languages, where we lack, say, suf-
ficient amounts of syntactically-annotated data to develop a
computational resource, let alone a POS tagger or syntactic
parser (Section 3).

Simultaneous to our investigation of the value of linguis-
tic features with high resource requirements, we also com-
pare the state of the art, bidirectional LSTM prosody assign-
ment model to a new modeling strategy drawn from the neural
machine-translation literature (Section 4). Our interest here is
two-fold: can overall performance be improved, and is one of
these approaches more or less robust to the impact of the dif-
fering feature sets?

.
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2. LINGUISTIC REPRESENTATIONS

We consider the following nested sets of predictive features
to study the impact on performance. The design of these sets
has been motivated by sensible real-world assumptions about
access to computational resources of variable richness.

Basic Set: In this most basic representation, we assume
we have access to punctuation and knowledge of the lan-
guage’s phonetic inventory (and basic broad descriptions of
the elements of that set like phonological voicing and vowel-
consonant distinctions). In terms of prosodic structure, we
assume access to sentence- and word-level tokenizations of
the input string1. Regarding computational resources, we
assume a lexicon is available to train a grapheme-to-phoneme
(G2P) converter.

Medium Set: In addition to all the features derivable from
the assumptions in the basic set, this medium representation
assumes access to lexical stress annotation, and syllabifica-
tion.

Rich Set: This set imposes the strongest assumptions on
existing resources, and includes all those features derived in
the medium set, in addition to POS tags, and symbolic word-
level prominence. Symbolic prosodic structure is further as-
sumed to include phrasing information. Note that, compared
incrementally to the medium set, this is where we are rely-
ing on the heaviest resources and processors to obtain the
prosody-predictive features.

After segregating the features by the types described
above, we obtain the feature dimensionality summarized on
Table 1 for each of five languages considered: US English,
Castilian Spanish, Standard High German, French, and Ko-
rean. The numbers are roughly comparable across languages
though differences exist due to the different cardinality of
symbolic sets in various languages (e.g., number of POS tags
in German vs. Spanish). This table also includes the size of
each of the corpora used in the evaluation.

The specific features included in each set consist of cat-
egorical and numerically-defined features. The former in-
clude the different values taken on by a symbolic feature
(e.g., various POS tags), to which one-of-N encoding has
been applied, and the latter consist mostly of raw and nor-
malized counts keeping track of elements between various
boundaries (e.g., number of phones to the {previous,next}
{syllable,word,phrase} boundary, etc.)

3. PREVIOUS AND RELATED WORK

There has been recent interest in the speech-synthesis lit-
erature on the challenges of building systems for under-
resourced languages, addressing various aspects, to cite a
few, like phrasing prediction [1], leveraging text-processing

1For all the languages considered, and many others, word segmentation
is straightforward, though this is not universally true.

Table 1. Input feature dimensionality for each of the feature
types

Voice Basic Medium Rich
English – Female (22.6 hrs) 156 202 302

Spanish – Male (9.5 hrs) 141 170 238
German – Female (13.8 hrs) 165 221 310
French – Female (22.1 hrs) 138 183 242
Korean – Female (17.1 hrs) 141 187 260

modules across closely-related but unequally-resourced lan-
guages, or data selection for improved intelligibility [2].
One main project worth singling out is the Simple4All
Project [3], which had the expressed objective of facilitating
the creation of speech technologies with little supervision,
such as TTS front-end text-processing tools that made few
implicit assumptions about the target language [4]

There is not an extensive literature investigating the role
and effectiveness of different feature types on prosody predic-
tion for TTS, but some relevant work has tried to investigate
the effect of including richer representations on prosody mod-
eling, demonstrating, e.g., the utility of employing syntacti-
cal information on top of segmental features for continuous
targest prediction [5], or for symbolic prosodic phrasing as-
signment [6]. Our work departs from these lines of inquiry
in that it explicitly seeks to segregate and quantify the ef-
fect of various types of information as a function of access
to the resources needed to develop feature extractors that ex-
ploit this information. Although most of the cited work on
synthesis for low-resource languages assumes a parametric
framework, we anchor our exploration within a unit-selection
synthesis framework, which relies on, and can fall back on,
the inherent natural prosody of the selected units (see [7] for
a discussion of the different roles prosody plays within these
architectures). The case study of interest here is that of a new
target language for which we assume a synthesis corpus of
reasonable size can be obtained for building a voice, but for
which we may lack the corresponding computational devel-
opment resources for text processing and therefore prosody
modeling.

4. MODELING APPROACHES

In this work we highlight two neural-network-based model-
ing approaches: bidirectional LSTMs, a state-of-the-art base-
line, and CBHG networks, a combined model that was devel-
oped for machine translation and has been used in end-to-end
speech synthesis. In the preparation of this work, we per-
formed preliminary investigations of a number of alternative
architectures including basic CNNs, maxout-CNNs [8] and
Self-Attention Networks [9]. These each yielded objective
performance measures that were close to, but worse than, the
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CBHG and LSTM performance using sensible, but untuned
settings. We did not perform exhaustive hyperparameter tun-
ing on these other approaches, focusing our attention on the
CBHG.

Bidirectional LSTMs: The Bidirectional LSTM ap-
proach we use was described in [7]. We have found that a 3
layer network with sizes, 65, 55, 45, is an optimal network
structure. It is worth noting that this was tuned on US English
and using the Rich feature set.

CBHG Network: The CBHG Network comprises a
number of components. These, most critically, include a
Convolutional Bank at with filters of different time resolu-
tions, a set of Highway layers and a bidirectional GRU layer.
The specific configuration we use is as follows. This con-
figuration is consistent, regardless of the language or feature
set that is used. The features are first processed by a prenet,
which consists of a single fully-connected embedding layer
with 128 hidden units, followed by a layer with 64 and an-
other of 128 units. The pre-net is connected to a set of 6 1-D
ReLU convolutional layers each with 128 filters, a stride of
1, and filter widths that vary from 1 to 6 units in time and a
1-D max-pooling layer of size 2. The output of the convolu-
tional bank then is fed through two 1-D ReLU convolutional
projection layers with 128 filters of size 3 with batch norm
applied after each. A residual connection from the output
of the prenet is applied to the output of the convolutional
projections. This residual connection is followed by a single
ReLU highway layer (again of size 128). Finally the output of
the residual connection is fed into a single layer bidirectional
GRU of size 128. A linear readout layer is used to convert its
output to a 4 dimensional prosodic target vector. The prenet
is trained with dropout with p = 0.5. A schematic of this
network can be seen in Figure 1.

This network structure has been shown to be effective at
capturing the long term dependencies necessary for machine
translation [10] and speech synthesis [11].

5. EVALUATION

Models using the two modeling architectures previously
described were trained for each of the five voices using a
90%-10% split of the data for training and validation, re-
spectively. The prosody targets correspond to those used in
a unit-selection system previously described in [7], and con-
sist of a 4-valued vector specifying, for each unit, the unit’s
duration, initial and final f0 values, and energy. Models were
trained to minimize a weighted mean-square error (WMSE)
criterion, where the target-specific weights were selected as
follows. Duration: a weight of 1 for all speech units and
utterance-medial silences, and 0 otherwise. Initial and final
f0: a weight corresponding to the unit’s degree of voicing.
Energy: a weight of 1 for all speech units, and 0 for all si-
lences. During training, the log of each target was taken,
and all targets were normalized to 0-mean and unit-variance

Fig. 1. Diagram of the CBHG architecture.

based on statistics of the training data.
Table 2 summarizes the WMSE on the validation set for

the different voices as a function of the input feature sets.
There is a clear trend across languages and models showing
a degradation in the fit (i.e., higher loss) as we move from
the richer set of features to the basic set. One exception to

Table 2. WMSE for various languages, architectures, and
feature sets.

Voice Model Basic Medium Rich

English BiRNN .433 .429 .419
CBHG .429 .424 .413

Spanish BiRNN .393 .389 .386
CBHG .408 .385 .386

German BiRNN .444 .438 .433
CBHG .437 .435 .430

French BiRNN .580 .577 .575
CBHG .575 .573 .571

Korean BiRNN .278 .279 .277
CBHG .274 .276 .278

this trend is found in our Korean voice. Here we see similar
prosody prediction across feature sets. There are a number
of possible explanations for this. First, the overall error is
much lower for Korean, the prosody in this voice may sim-
ply be easier to predict making differences between linguistic
features to be insignificant. Second, the quality of the lin-
guistic resources may be too low to impact prosody predic-
tion. Third, the relationship between the specific linguistic
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resources that were explored and prosodic realization may be
different in Korean than in the other languages.

To investigate the perceptual implication of this degrada-
tion, we conducted a series of listening tests using the US En-
glish voice by synthesizing, under various model-and-feature-
set configurations, a set of 40 distinct sentences, 10 of which
corresponded to syntactically-determined questions (i.e., non-
declarative questions). Listeners in a crowd-sourced exper-
iment were asked to rate the overall naturalness of a ran-
domized subsample of the stimuli on a standard 5-point scale
(Bad, Poor, Fair, Good, Excellent). Each sentence in each
testing configuration was rated by 25 independent listeners.

Tables 3 shows the results of the mean opinion scores
across the various feature sets under the BiRNN/LSTM
and CBHG architectures. Although the degradation in the
objective metrics corresponds to a gradual degradation in
the perceptual quality of the systems, the only statistically-
significant perceptual differences are between the basic and
rich feature sets (p = 0.0024 for the BiRNN-LSTM and
p = 0.00017 for the CBHG model), where these differences
have been assessed using the Mann-Whitney U-Test adjusting
for rater- and utterance-bias, as described in [12].

Table 3. Overall MOS scores (and standard deviation) for the
various combinations of architecture and feature sets.

Architecture Basic Medium Rich
Bi-RNN 3.36 (.95) 3.43 (.94) 3.47 (.93)
CBHG 3.33 (.95) 3.42 (.94) 3.48 (.96)

A second listening test was designed to isolate the per-
ceptual effect of the alternative CBHG architecture against
the BiRNN/LSTM baseline. A 2-system test using the same
sentences, and the full rich feature set, was deployed using
a similar design as previously explained and another 25 in-
dependent subjects. The results of that test show that the
marginally-better fit of the CBHG architecture only translates
into a statistically-insignificant marginal lead: an MOS of
3.45 (σ = 0.94) for BiLSTM vs 3.49 (σ = 0.93) for CBHG
(p = 0.295). While we find a clear relationship between the
objective criterion and MOS scores in all evaluations, sub-
stantial improvements to WMSE are required to observe sta-
tistically significant differences to MOS tests with 25 raters.

6. DISCUSSION AND CONCLUSION

Feature composition: We confirm that performance, as mea-
sured by objective metrics, degrades as a function of impover-
ished feature sets across the five languages examined. When
evaluating how these differences translate into a perceptual
difference for a US English voice, we notice that big improve-
ments in objective scores are needed to obtain a measurable
difference in MOS, and only observe a statistically signifi-
cant difference between the basic and rich sets. There are

two implications from this last observation worth noting: 1) a
good amount of text analysis (e.g., parsing and tagging) is re-
quired to obtain a perceptually-measurable difference beyond
the base quality level afforded by the coarser, but more eas-
ily accessible, features of the basic set. 2) On the other hand,
when developing models for a new language where these re-
sources are not immediately available, the results obtained
with the medium set of features suggest it is possible to build
acceptable prosodic-target models that provide a reasonable
initial level of performance.

Modeling approaches: Since BiRNN-LSTM were first
shown to provide state-of-the-art performance for prosody
modeling tasks, many other neural architectures have been
proposed in the deep-learning literature. This provided the
impetus for reexamining their performance side by side with
some of these newer models. Our experiments show that
the BiRNN architecture still provides state-of-the-art perfor-
mance, and that although CBHG is a viable competitor, it
is a much more complex model that only yields small gains
to objective measures and statistically-insignificant gains to
subjective measures. Lastly, neither approach robustly com-
pensates for the composition of the feature set, since we see
the same degradation behavior across models as a function of
input features.

We have reported initial perceptual validations for one
language, but further work remains to be done to verify if
similar perceptual trends accompany the reported objectives
for the remaining languages. Another aspect that is not ad-
dressed in this work is the impact of the quality and quantity
of respective resources on prosody prediction. For instance,
we assumed access to a G2P and a POS tagger for various
representations, but did not investigate variable factors like
the impact of lexicon size on G2P performance, or the quality
of the POS tags, and consequently the effect that such vari-
able factors would carry over to the final task. That would
have significantly increased the scope of this initial investiga-
tion. This is nonetheless, a reasonable inquiry (e.g., lexica for
a new language may be of moderate size, or noisy; solving the
G2P task will be a much more challenging problem for some
languages; etc.), and it remains the object of further work.
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