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ABSTRACT

To capture variation in categorical emotion recognition by hu-
man perceivers, we propose a multi-label learning and evaluation
method that can employ the distribution of emotion labels generated
by every human annotator. In contrast to the traditional accuracy-
based performance measure for categorical emotion labels, our pro-
posed learning and inference algorithms use cross entropy to directly
compare human and machine emotion label distributions. Our audio-
visual emotion recognition experiments demonstrate that emotion
recognition can benefit from using a multi-label representation that
fully uses both clear and ambiguous emotion data. Further, the re-
sults demonstrate that this emotion recognition system can (i) learn
the distribution of human annotators directly; (ii) capture the human-
like label noise in emotion perception; and (iii) identify infrequent
or uncommon emotional expression (such as frustration) from incon-
sistently labeled emotion data, which were often ignored in previous
emotion recognition systems.

Index Terms— Emotion recognition, prototypicality, label
noise, multi-label learning, soft labeling, audio-visual emotion

1. INTRODUCTION

Our aim is to develop emotion recognition algorithms that go be-
yond one-hot label assignment (e.g., ‘happy or ‘valence: 2.5’) to in-
fer the emotion distribution produced by multiple human annotators.
The main challenge in developing emotion recognition systems has
been the subjectivity and ambiguity in ground truth labels for emo-
tion. This paper presents a new ‘human-like’ emotion recognition
system that represents, learns, and evaluates categorical emotion la-
bels as multi-label distributions. This system is based on multi-label
learning and inference algorithms that can directly learn the emotion
distribution of multiple human annotators; in addition, we introduce
new performance measures based on the consistency of the emotion
label distribution between machine and human.

Traditional emotion recognition systems measure system per-
formance using accuracy based on a comparison between the ag-
gregation of annotator outcomes (as a ground truth label) and the
estimated emotion label from the system. There are two basic ap-
proaches for emotion representation, dimensional and categorical
approaches. To overcome label noise, these approaches usually ei-
ther aggregate (dimensional approach) or take the majority vote (cat-
egorical approach). For instance, using the traditional one-hot label-
ing, Valstar et al. calculated the average dimensional emotion rat-
ings from all raters [1]; Ringeval et al. employed a normalization
technique to increase the inter-rater agreement, while preserving the
original balancing of the dimensional ratings [2]; Shah et al. used a

majority vote-based categorical emotion ground truth for multimodal
emotion recognition [3].

Recent studies have attempted to combat label noise using soft
labeling approaches [4–6]. For instance, Mower et al. presented
a pioneering work that represented emotions with soft-labeling by
using a set of binary emotion classifier outputs [4]. Lotfian and
Busso presented an innovative probabilistic method for soft labeling
of emotion in speech emotion recognition [5]. These methods have
shown improved emotion recognition performance and provided
more interpretable representation for ambiguous emotions com-
pared to traditional systems. However, these previous soft labeling
methods discarded inconsistently labeled data (data with no majority
vote (NMV) from annotators). So, although effective in reducing an-
notator variations, these methods may not preserve all the variations
of human annotators in ground truth and so may remove potentially
useful information about emotionally expressive behavior.

In this work, we propose a soft-multi-labeling technique that is
based on annotator distribution over emotion classes and as such use
all the available data, even when the data indicates no agreement
between human evaluators. Our multi-label approach can represent
the distribution of emotion, even for NMV; so we can retain, learn,
and infer the subtle difference within NMV data.

Using a multi-label categorical approach for emotion represen-
tation, we investigate how to capture and utilize the emotion label
noise in emotion recognition systems to provide a within-category
emotion dimension. We propose to use a feedforward neural network
with the output layer activated using the full emotion distribution
over multiple human annotators. Our network then learns the multi-
label distribution directly. To shift the performance goal of emotion
recognition to the learning of subjective annotator evaluation, we
also propose to use cross entropy between the true and estimated
emotion distribution, rather than using a one-hot-label based accu-
racy. Our proposed method uses more descriptive and richer emotion
labels than traditional methods and can shed light on the relationship
between audio-visual emotion expressions and emotion perception.

Our experimental results show that the proposed multi-label ap-
proach achieves higher accuracy than traditional one-hot labeling
and provides human-like interpretation of automatic emotion recog-
nition. The results also demonstrate the importance of emotionally
ambiguous data in learning by showing that the use of NMV data
in emotion recognition systems improves the overall performance.
To the best of our knowledge, this is the first attempt to develop
an emotion recognition system for five-class classification of anger,
happiness, neutrality, sadness, and frustration, for IEMOCAP [7].

The key innovation of this proposed work is the inclusion of
emotionally ambiguous data using new learning methods. Ambigu-
ous, subtle expressions of emotion, which often obtain no majority
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agreement from human annotators, are prevalent in the real world
[8]. The use of such expressions in our learning or training will in-
crease the size of the available data (e.g., 17.25% for the IEMOCAP
benchmark dataset [7]) and make possible the application of big data
approaches, such as deep learning, to emotion recognition.

2. BACKGROUND AND RELATED WORK

Audio-visual emotion recognition systems computationally classify
emotion from expressive audio-visual behavior, such as speech, fa-
cial expression, and body gesture [8–12]. These systems mostly use
the perceived emotion labels generated by multiple human annota-
tors as ground truth emotion labels. However, a fundamental chal-
lenge in developing real-world emotion recognition systems is the
noisiness in emotion labels due to subjectivity in emotion perception
(class noise) and ambiguity in emotion expression, which we call
‘emotion label noise’. This noise, need not relate to how accurate or
reliable the data is, instead, it may reflect the ambiguity and subtlety
of the emotion expressions themselves. Noise is not just an error in
an emotion classification task; it may contain meaningful informa-
tion that reflect ambiguity or mixed emotional phenomena, such as
the mixture of happiness and sadness.

There are multiple factors that give rise to emotion label noise:
for example, perceiver error, differential perceiver bias or subjectiv-
ity [13, 14], production variability within or across individuals [15],
production of mixed emotion (multiple) expressions [16], and the
domain – some emotions (e.g., disgust) simply are not clear-cut [17].
The level of noisiness in emotion labelling can be considered to indi-
cate the degree of prototypicality of the expression. In other words,
when an instance of an expression has low emotion label noise it
can be considered to be prototypical, a result due to the combination
of less variability in production, some robustness to perceiver’ bias,
and this instance being unambiguous (some emotions may have very
few prototypical exemplars).

Several studies have investigated the use of non-prototypical
data in emotion recognition systems. Mower et al. [18] studied
a system’s ability to interpret non-prototypical emotions, and pro-
posed a new method to represent the confidence level of presence
of certain emotion classes using outputs of binary classifiers [4].
Schuller et al. studied data selection methods to select emotionally
salient training data [19]. They calculated prototypicality using the
Euclidean distance of the class center of positive instances of SVM
classifiers. The experimental results on eight emotion databases
showed that the proposed method performs well for estimating
arousal, but not for valence. Kim et al. [20] studied deep learning
methods to learn complex interactions between audio and visual
emotion expressions, and found that unsupervised feature learning
that use deep neural networks is more effective for non-prototypical
data than prototypical data. The key difference between our pro-
posed method and those implemented in the above studies is that
in using NMV as well as non-prototypical (and prototypical) data,
the current system provides a method that employs the emotion
distribution of multiple labels generated by human annotators.

Recent studies have employed deep neural networks [5, 6] and
multi-task learning [21] to implement soft-labeling approaches.
Lotfian and Busso estimated probabilistic distributions of emotion
and considered the covariance matrix between emotion categories
while training deep neural networks [5]. Fayek et al. compared an
ensemble and soft-label method when modeling inter-rater variabil-
ity, using speech and categorical emotions [6]. Han et al. used a
multi-task learning approach, where two tasks are emotional states
and the degree of uncertainty (measured using inter-rater agree-

ment) [21]. These soft-labeling approaches show improvement in
emotion recognition when using soft-label approaches, however, an
open question remains concerning the use of inconsistently labeled
emotion data or ambiguous emotion expressions, such as frustra-
tion. Our work differs from the above studies in that we develop a
learning and inference algorithm that can utilize the data for which
a ‘gold standard’ is difficult to find. Our work also differs in that we
directly map machine and human confusions, rather than modeling
uncertainty in emotion perception. We propose that this will lead to
a more ‘human-like’ emotion recognition system that can produce
similar responses to equivocal emotions as humans.

3. DATA AND FEATURES

To evaluate our proposed approaches, we use an established audio-
visual emotion dataset, IEMOCAP [7]. This dataset recorded ten
speakers (five sessions of female-male pairs) during hypothetical
emotional situations. The dataset includes audio, 3-D motion cap-
ture markers, and transcripts. We use both 3-D motion capture data
from 55 markers on the faces and speech data that include pitch, en-
ergy Mel filter bank features, as in [4,20]. For both facial and speech
features, we compute 8 statistical functionals (mean, standard de-
viation, lower quantile, upper quantile, quantile range, and polyno-
mial regression coefficients of degree three) at the utterance level.
The resulting number of features are 1320 for face motion and 232
for speech. We calculate the global mean over the ten speakers for
each feature dimension and normalize each speaker’s audio-visual
features using mean normalization as in [20, 22].

We use categorical labels, annotated by at least three human
annotators for each utterance and assign the prototypicality labels
as follows: prototypical (total agreement, ‘Prot’), non-prototypical
(majority agreement, ‘Non-Prot’), and non-majority-vote (no agree-
ment, ‘NMV’) labels. The emotion categories include anger (prot:
296, non-prot: 325), happiness (prot: 766, non-prot: 532), neutral-
ity (prot: 127, non-prot: 327), frustration (prot: 372, non-prot: 626),
surprise (prot: 1, non-prot: 30), fear (prot: 4, non-prot: 16), disgust
(prot: 0, non-prot: 1), and other (prot: 0, non-prot: 2). In this paper,
we used 1891 prototypical, 2338 non-prototypical, and 812 NMV
utterances in total, retaining both data that have consistent (majority
vote) and inconsistent (NMV) emotion labels.

4. METHOD

In this paper, we consider three hypotheses:
(H1) Learning from NMV data: An emotion recognition system
trained with NMV data will outperform a system trained without
NMV data, particularly improving test accuracy of NMV instances.
(H2) Multi-label approach for increased performance and
‘human-like’ interpretation: An emotion recognition system
trained using multi-labeled data will achieve higher accuracy than a
system trained with traditional one-hot-labeled data, particularly for
non-prototypical data. Furthermore, the multi-label outputs enable
us to build a more “human-like” emotion recognition system, that
can provide an interpretable description of emotion distribution.
(H3) 5-class emotion classification: A multi-label approach will en-
able a more accurate classification of emotions that typically have
greater noise, such as frustration; emotions that have been often dis-
carded in previous systems [4, 22].

To test these hypotheses, we compare the emotion recognition
performance of our proposed multi-label approach to that of a base-
line (average cross-entropy error and accuracy). As a baseline we
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use the traditional one-hot-label approach that assigns a single label
to training and testing instances. In evaluating our method, we define
expressions as prototypical (i.e., total agreement), non-prototypical
(majority agreement), and NMV (no agreement). For both baseline
and our proposed method, we analyzed the performance when the
system was trained on (i) all data, (ii) prototype-only, (iii) non-
prototype-only, and (iii) NMV-only.

We perform leave-one-subject-out cross validation across all of
our experiments. We use paired t-tests for significance tests, and
claim significance when p < 0.001.

4.1. Ground Truth for Human-Like Emotion

Our proposal is to use activation-based representation of emotion
labels in neural networks to generate emotion soft labels. This ap-
proach is inspired by the pioneering work of Mower et al. [4], which
presented SVM output-based vector representation of estimated
emotion at the inference stage. We propose to go a step further and
directly use the emotion distribution produced by human annotators
in both training and inference. We use annotator distribution over
different emotion classes. For instance, if six annotators label an
utterance as “happy,” two annotators label it “neutral,” one annota-
tor labels it “sad,” and one annotator labels it “frustration” (out of
the five classes of “angry,” “happy,” “neutral,” “sad”, and “frustra-
tion”), we then define and represent the ground truth of the utterance
as a four-dimensional representation of {0, 0.6, 0.2, 0.1, 0.1}. To
generalize this example to N classes of emotion, each unit of emo-
tional data is represented as an N-dimensional vector, where each
dimension of the vector is the fraction of annotators who chose that
emotion class. The benefit of this representation is that we can fur-
ther represent the NMV data’s emotion labels, rather than discarding
them as in current practices in traditional emotion recognition sys-
tems [20].

The number of utterances that are labeled as surprise, fear and
disgust is small because these emotions were less often produced in
the IEMOCAP data which are not read speech (that has specific tar-
get emotion per sentence) but produced with hypothetical emotion-
provoking situations. Previous studies used 4-class classification of
anger, happy, neutral, sad emotion classes for performance measure,
mainly due to this class imbalance. In our experiments, we include
data for frustration, surprise, fear, and disgust.

4.2. Multi-Label Emotion Learning and Inference

Once we obtain the soft-label representation of emotion ground
truth, we use a multi-label learning method that can use the multi-
label similarity between the estimated emotion output and emotion
ground truth. To that end, we modify ELM for soft-multi-labeling
regression and classification experiments. ELM is computationally
efficient in both training and testing, and has a tendency to reach
a global optimum. We choose ELM because of its computational
efficiency and the flexibility to use multi-label outputs in the output
layer of the network. ELM is a neural network where the hidden
layer is not required to be neuron alike [23]. The output activation
function of ELM is formulated as: fl(x) =

∑L
i=1 βββihi(x) = h(x)βββ,

where L is the number of hidden nodes of the neural network. Also,
we define the feature mapping as h(x) = [h1(x), h2(x), ...hL(x)],
where hi(x) is a nonlinear piecewise continuous function that satis-
fies the ELM universal approximation capability theorems, defined
in [24], such as sigmoid, gaussian, hard limit, or cosine functions.
We define the output weight vector from the hidden nodes to the
output nodes as βββ = [βββ1,βββ2, ...βββL]

T . In this work, we use the

same L = 500, a third of original feature dimensions, across all
experiments to ensure the consistency in model complexity.

ELM has two main stages for training: (i) random initialization
of hidden nodes and (ii) learning the weights between the hidden
nodes and the output nodes. For the first stage, the initialization can
be chosen as any mapping function h(x). In the current work, we
use a sigmoid function to capture nonlinear relationships of inputs.
For the second stage, ELM learns the weights by minimizing the
training error. Here, we use cross entropy for emotion recognition
tasks. ELM also learns the weights that minimize the norm of the
output weights:

minimize
βββ

||Hβββ − T ||2 and ||βββ‖|,

where H is the hidden-layer output matrix for L hidden nodes.

4.3. Cross Entropy for Categorical Emotion Variations

To directly compare human and machine emotion label distribu-
tions, we use a cross-entropy based performance metric. Cross
entropy has been widely used for measuring the performance
of dimensional emotion recognition [25]. Our work differs from
previous work in that we use cross entropy to investigate the ef-
fectiveness of soft-multi-labeling that captures the full categor-
ical emotion distribution over human annotators. In this paper,
we provide both cross entropy (for regression task) and accuracy
(for classification task) as performance measure. In particular, the
cross-entropy results can provide insight about the efficacy of our
method compared to baseline and the interpretation of human-
like emotion recognition. Cross entropy is calculated as follows:
Cross Entropy = −EMOtrue. ∗ log(EMOest), where EMOtrue

and EMOest are multi-dimensional vectors of true and estimated
emotion distributions, respectively, and n is the number of utter-
ances. ‘.∗’ denotes the element-wise multiplication. To compare
our results using traditional accuracy measure, we assign a single
emotion label to the multi-dimensional label based on the maximum
emotion component as in previous work [4].

5. RESULTS AND DISCUSSION

To address our hypotheses (H1)–(H3), we present the results of two
sets of experiments: cross-entropy results (‘CE’) and 5-class emotion
classification accuracy results (’Acc’) in Table 1. The cross entropy
results the best account of the difference between estimated and true
emotion distribution; while the accuracy-based results demonstrate
that the proposed approach allows the use of emotions that are often
discarded in previous systems due to greater label noise (e.g., frustra-
tion). Each set of results are divided into five categories for training
utterance types and four categories for test utterance types: general
results (‘All’), prototypical utterances (‘Prot’), non-prototypical ut-
terances (‘Nonprot’), and NMV utterances (‘NMV’). This allows us
to investigate the respective efficacy of our proposed emotion recog-
nition system when different prototypical types are considered in
training and testing.

First of all, CE results address (H1) and (H2). To address (H1),
we train our emotion recognition systems using prototypical-only
(‘P’), non-prototypical-only (‘NP’), NMV-only (‘NMV’), combined
prototypical and non-prototypical (‘P+NP’), and all (‘All’) utter-
ances. We also compare the cross-entropy results of test utterances
for proposed and baseline methods, to address (H2).

Overall, our proposed method always significantly outperformed
the baseline, supporting (H2). The improved performance using our
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Table 1: Our proposed cross-entropy results (‘CE’) and traditional unweighted accuracy results (‘Acc’), averaged over ten test speakers
of IEMOCAP. Trained Data rows represent what prototypcality type is used for training the system: Prot-only, Nonprot-only, NMV-only,
Prot+Nonprot, and All (Prot+Nonprot+NMV) training utterance types. Test Utterances columns represent what test utterances are used to
report the results: All, Prot, Nonprot, and NMV test utterances. “[*]” indicates the statistical significance levels (p < 0.001) between our
proposed method and baseline.

Trained
Data Method

Test Utterances

All Prot Nonprot NMV

CE Acc CE Acc CE Acc CE Acc

Prot
Proposed 0.6779[*] 41.96 0.4996[*] 48.59 0.7823[*] 40.20 0.8012[*] 27.44

Baseline 1.3514 42.54 0.9175 50.33 1.5430 40.80 1.8000 27.03

Nonprot
Proposed 0.4609[*] 40.22 0.3603[*] 44.59 0.5143[*] 37.20 0.5421[*] 32.58

Baseline 1.0914 40.68 0.7960 46.37 1.2256 36.76 1.4015 32.84

NMV
Proposed 0.6637[*] 23.01 0.5925[*] 22.67 0.6995[*] 22.64 0.7275[*] 21.39

Baseline 3.5192 N/A 3.5158 N/A 3.5193 N/A 3.5218 N/A

Prot+Nonprot
Proposed 0.5115[*] 44.58 0.3877[*] 51.37 0.5849[*] 42.80 0.5820[*] 28.99

Baseline 1.0007 43.58 0.7190 51.93 1.1260 40.54 1.2983 27.93

All
Proposed 0.4837[*] 44.45 0.3723[*] 52.76 0.5531[*] 40.70 0.5478[*] 28.62

Baseline 1.0362 N/A 0.7153 N/A 1.1934 N/A 1.3420 N/A

multi-label approach, across all training and testing environments,
indicates the importance of our new representation and performance
metric for emotion recognition. When comparing the systems trained
with NMV (Trained Data are NMV or All) vs. without NMV
(Trained Data are P, NP, or P+NP), the results significantly improve
from baseline to proposed methods, particularly when NMV-only
data are used for training (improvement from 3.5192 to 0.6637 when
‘all’ test utterances are used). The baseline methods work particu-
larly poorly when only NMV utterances are used (all greater than
3.50). However, our proposed method achieves significantly higher
cross-entropy results in the same experiment, demonstrating the im-
portance of a multi-label approach, particularly for NMV utterances.
Hence, we conclude that (H1) is supported.

Next, Acc results show the 5-class emotion classification accu-
racy after we transfer the multi-label outputs to discrete emotion
classes. For our proposed method, we use the maximum component
over the emotion dimensions of multi-label outputs for each utter-
ance to assign a single label. The classification results address (H3),
and will provide insight into how our multi-label approach can be ex-
tended to categorical classification, and whether our new approach
enables us to accurately classify emotions that are often discarded
in previous systems due to greater label noise (e.g., frustration). As
in Table 1, we train our systems using different prototypical types to
address (H1), and compare the accuracy results to address (H2).

In general, the 5-class classification of anger, happy, neutral,
sad, frustration achieves up to 47.17% in weighted accuracy, 2.26%
higher than the highest accuracy of the baseline method (45.97%).
Both proposed and baseline methods achieve much higher accuracy
than a chance (20%). To the best of our knowledge, our 5-class clas-
sification is new for this benchmark IEMOCAP dataset. Our pro-
posed multi-label approach enables us to accurately classify emo-
tion labels with more noise, such as frustration, which have been
often discarded in previous systems, supporting (H3). Also, the pro-
posed method trained using all utterances (UW 44.45%, W 46.38%)
achieves significantly higher accuracy than the same method trained
using only prototypical utterances (UW 41.95%, W 44.05%), with
2.50% (p = 0.036) and 2.33% (p = 0.043) for UW and W ac-

curacy, respectively. This demonstrates that it is beneficial to use
non-prototypical and NMV utterances in training, supporting (H1).

Finally, the proposed method outperforms baseline when pro-
totypical and non-prototypical utterances are used for training, as
in the traditional emotion recognition benchmark. When all test
utterances are evaluated, UW accuracies are slightly higher for the
proposed method than baseline, 44.58% to 43.58% (1.00% increase,
not significant). The proposed method also achieves slightly higher
W accuracy than baseline, 47.17% to 45.97% (1.20% increase,
not significant). The non-prototypical and NMV test utterances
also achieve higher performance than baseline when our proposed
method is used compared to baseline, whereas the prototypical test
utterances achieve similar accuracy for the proposed method and
baseline. This may indicate that our proposed multi-label method
particularly helps learning from emotionally ambiguous data, i.e.,
non-prototypical and NMV utterances. Given the prevalence of such
subtle and ambiguous emotion expressions in real-world applica-
tions, our method is promising. Hence, the results support (H3).

6. CONCLUSION

In this work, we present a new representation, learning, and infer-
ence method that utilizes multi-label approach for emotion recog-
nition. Unlike traditional emotion recognition systems that either
use one-hot labeling method or discard inconsistently labeled data
(NMV data), our proposed method can use the full data that include
prototypical, non-prototypical, and NMV data. The key novelty of
this work comes from our investigation of the hypotheses (H1)-(H3).

This research points the way to unlocking the potential of big
multimedia data with an approach can exploit full human annotator
data resources, even those with no majority agreement, which are
often rejected from current emotion recognition systems. We pro-
pose that using the full data set will improve the learning of univer-
sal emotion expression patterns across different users and emotion
classes. We anticipate emotion recognition systems trained using this
approach will be able to generate more accurate and robust emotion
inference for a new user or emotion class.
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