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ABSTRACT

The scarcity of emotional speech data is a bottleneck of developing
automatic speech emotion recognition (ASER) systems. One way to
alleviate this issue is to use unsupervised feature learning techniques
to learn features from the widely available general speech and use
these features to train emotion classifiers. These unsupervised meth-
ods, such as denoising autoencoder (DAE), variational autoencoder
(VAE), adversarial autoencoder (AAE) and adversarial variational
Bayes (AVB), can capture the intrinsic structure of the data distribu-
tion in the learned feature representation. In this work, we systemati-
cally investigate four kinds of unsupervised feature learning methods
for improving speaker-independent ASER. We show that all meth-
ods improve the performance regarding unweighted accuracy rating
(UAR) and F1-score over methods that use hand-crafted features or
that do not perform feature learning on external datasets. We also
show that VAE, AAE and AVB methods, which control the distri-
bution of the latent representation, outperform DAE that does not
control such distribution. This suggests the benefits of using vari-
ational inference methods to learn features from general speech for
the speech tasks such as ASER that has very limited labeled data.

Index Terms— Automatic speech emotion classification, unsu-
pervised feature learning, autoencoders, variational inference

1. INTRODUCTION

Emotions are a vital part of social interactions. Designing compu-
tational models to recognize emotions is key to an automatic under-
standing of social interactions. In recent years, researchers have de-
veloped automatic emotion recognition systems using different data
modalities, including physiological signals [1], facial expressions
and body gestures [2], and speech [3]. Among these modalities,
speech is more accessible and less intrusive in daily life. Therefore,
automatic speech emotion recognition (ASER) has received much
attention in this field.

ASER is a challenging task. While automatic systems have
been shown to outperform naive human listeners on speech emo-
tion classification [4], unlike speech and image classification tasks,
current ASER systems are still not competitive to trained human lis-
teners. One bottleneck for improving ASER is the lack of training
data. Recording and annotating emotional speech is a very time-
consuming process. Compared to general speech datasets, publicly
available speech emotion recognition datasets are much more lim-
ited in the number of speakers and utterances, and the coverage of
vocabulary and recording conditions [3].
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One way to alleviate the data lacking issue is to transfer knowl-
edge learned from unlabeled data or data in other related tasks
(source tasks) to the task at hand (target task) [5]. One technique is
unsupervised feature learning, which does not utilize the label infor-
mation but aims to learn robust features that can capture the intrinsic
structures of the data. These features are also often discriminative to
train better classification models for the target task [6,7]. For ASER,
the most natural and available data sources are general speech. They
may not carry strong emotions, but features learned from these data
may capture intrinsic structures of speech and be useful for ASER.

Unsupervised feature learning has been rarely explored in ASER
beyond autoencoders (AE) [8] and denoising autoencoders (DAE)
[6]. AE and DAE aim to learn features that are good for the recon-
struction of the input. More advanced techniques, such as variational
autoencoders (VAE) [9] and generative adversarial networks (GAN)
[10], do not aim to reconstruct the input, but aim to generate data
that come from the same distribution as the input. This relaxation
tends to put more emphasis on the modeling of intrinsic structures
of the data during feature learning [7, 9, 10].

In this paper, we design a convolutional neural network (CNN)-
based ASER system and make the first systematic exploration of
various kinds of unsupervised learning techniques to improve the
speaker-independent emotion recognition accuracy. These tech-
niques include the denoising autoencoder (DAE), variational au-
toencoder (VAE), adversarial autoencoder (AAE) and adversarial
variational Bayes (AVB). We compare these systems with two base-
lines (SVM and CNN) that work on hand-crafted features without
unsupervised feature learning. Experiments show that unsupervised
feature learning significantly improves the ASER performance,
when trained on a large scale general speech dataset, regarding un-
weighted accuracy rating (UAR) and F1-score. Furthermore, the
latent variable models including VAE, AAE, and AVB improve the
ASER performance more than the DAE and other baselines. This
suggests that unsupervised learning with these latent variable models
are useful practices for ASER, where training data is insufficient.

The rest of the paper is organized as follows: Related work on
ASER and its usage of unsupervised learning are presented in Sec-
tion 2. Section 3 describes the proposed ASER system and the ex-
plored unsupervised learning approaches. Section 4 presents exper-
imental results, and Section 5 concludes the paper.

2. RELATED WORK

Traditional ASER systems that utilize Gaussian mixture models
(GMMs) [11–13], hidden Markov models (HMMs) [14, 15], and
support vector machines (SVMs) [16–18], rely on well-established
hand-crafted speech features. These features usually include spec-
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Fig. 1. Proposed ASER system overview. The dashed red windows
represent the sliding window with 50% overlap. From each window,
emotion class probabilities (p1, p2, p3, p4 and p5) are predicted and
the average of these vectors is calculated over all windows is calcu-
lated for each utterance. The emotion that has the highest probability
is predicted as the emotion of the utterance.

tral, cepstral, pitch, and energy features of the speech signal at the
frame level. Statistical functionals of these features are then applied
across multiple frames to obtain an utterance-level feature vector.

Some researchers explored deep learning methods to find ro-
bust features for the ASER task. Xia et al. [19] proposed a mod-
ified DAE that maps input speech to two hidden representations, a
neutral representation learned by reconstructing neutral speech be-
forehand, and an emotional representation learned by reconstructing
emotional speech with the neutral representation fixed. During test-
ing, the emotional representation of a test speech sample is fed to an
SVM classifier for emotion classification. In their follow-up work
[20], Xia et al. incorporated the speaker gender information which
resulted in further improvements.

Ghosh et al. [21, 22] trained stacked DAEs and a bidirectional
long short-term memory (BLSTM) AE to obtain a latent represen-
tation of the input spectrogram extracted from the speech and the
glottal flow waveform. These latent representations were then fed
to a multilayer perceptron (MLP) with a softmax output for 4-class
emotion classification.

Deng et al. [23] proposed a single-layer sparse autoencoder
(SAE) for feature transfer learning between different emotion cor-
pora. One SAE was trained for each emotion class in the source
domain using hand-crafted features as the input. Then each training
sample in the target domain was reconstructed by the SAE of the
corresponding class. Finally, an SVM model was trained on the
reconstructed data to classify the original test samples without going
through the SAEs. Deng et al. [24] obtained further improvements
by replacing the SAEs with denoising autoencoders (DAEs).

Although these studies have demonstrated the benefits of unsu-
pervised feature learning using DAEs, more advanced latent vari-
able methods such as VAE, AAE, and AVB have not been explored
for ASER. These methods attempt to model the distribution of data
and are likely to learn more meaningful, controllable and discrimina-
tive features, leading to better classification performance, especially
when the amount of labeled data is small [7].

3. METHOD

We propose to adopt a convolutional neural network (CNN)-based
architecture (shown in Fig. 1) for ASER and to investigate the effects
of different unsupervised learning techniques. Specifically, the net-
work contains a pre-trained encoder network to extract features from

Net Layers Activ. F. No F. Size Strides Output Shape

encoder
(qθ)

Input (x) - - − − 64× 64× 1
Conv2D LReLU 32 9× 9 2× 2 32× 32× 32
Conv2D LReLU 64 7× 7 2× 2 16× 16× 64
Conv2D LReLU 128 5× 5 2× 2 8× 8× 128
Flatten - - − − 8192
FC Linear - − − 256

decoder
(pφ)

Input (z) - - − − 256
FC LReLU - − − 8192
Reshape - - − − 8× 8× 128
Conv2DT LReLU 128 5× 5 2× 2 16× 16× 128
Conv2DT LReLU 64 7× 7 2× 2 32× 32× 64
Conv2DT LReLU 32 9× 9 2× 2 64× 64× 32
Conv2D Sigmoid 1 1× 1 1× 1 64× 64× 1

AAE
discriminator

Input (z) - - − − 256
FC LReLU - − − 2048
FC LReLU - − − 2048
FC LReLU - − − 2048
FC Sigmoid - − − 1

AVB
discriminator

Input (z) - - − − 256
FC LReLU - − − 4096
Reshape - - − − 64× 64× 1
Input (x) - - − − 64× 64× 1
Concat - - − − 64× 64× 2
Conv2D LReLU 32 9× 9 2× 2 32× 32× 32
Conv2D LReLU 64 7× 7 2× 2 16× 16× 64
Conv2D LReLU 128 5× 5 2× 2 8× 8× 128
Flatten - - − − 8192
FC LReLU - − − 256
FC Sigmoid - − − 1

classifier

Input (z) - - − − 256
FC LReLU - − − 1024
Dropout - - − − 1024
FC LReLU - − − 1024
Dropout - - − − 1024
FC Softmax - − − 5

Table 1. The architecture of the encoder, decoder, discriminator
and emotion classifier networks. AEs share the encoder and decoder
structures, except AVB where we modify the encoder to accept exter-
nal noise input similar to AVB discriminator architecture. Conv2D
is a 2-d convolution layer, where Conv2DT is a transposed 2-d con-
volution (or deconvolution) layer. Concat is the concatenation layer.
F. No is the number of filters, where F. Size is the filter size.

the log-Mel spectrogram of the input speech, and a fully connected
(FC) network to classify their emotions. The encoder includes three
convolutional layers with a leaky rectified linear unit (LReLU) acti-
vation and an FC layer with a linear activation as shown in Table 1.
The encoder gradually reduces the dimension of the input into the la-
tent dimension. During classification, the encoder network weights
are frozen. The classifier consists of three fully connected layers
with LReLU activations except for the last activation, which uses
softmax to represent probabilities of each emotion class. There are
two dropout layers with 0.25 drop rate between FC layers. The cat-
egorical cross-entropy loss is used during the training of the FC.

The proposed network processes each utterance by segments
that are 1 second long. During training, we randomly choose patches
to form training batches from each utterance and use the utterance-
level label as the label for the segment. During testing, we segment
each utterance into 1-second long segments with a 0.5-second over-
lap. We predict the emotion probabilities in each segment and then
average the probabilities across all segments. We finally choose the
emotion category, which has the highest mean probability, as the
utterance-level emotion classification result.

In the following, we describe different architectures, and infer-
ence models for the encoder explored in this paper, including denois-
ing autoencoder (DAE), variational autoencoder (VAE), adversarial
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autoencoder (AAE) and Adversarial Variational Bayes (AVB).

3.1. Denoising Autoencoder (DAE)

Denoising autoencoders (DAEs) [6] aim to extract robust features by
reconstructing clean data from their corrupted versions. They have
been applied to ASER systems [19–22] and yielded performance in-
crease. The model can be expressed as:

z ∼ qθ(z|x̃), (1)
x̂ ∼ pφ(x|z), (2)

where z, x, x̃ and x̂ are the latent representation, clean data, cor-
rupted data and reconstructed clean data, respectively. qθ and pφ
are the probabilistic notation of the encoder and decoder networks,
where θ and φ are the trainable parameters of the networks. When
cross-entropy is used to measure the reconstruction error, the loss
function is defined as:

min
θ,φ
−Ez∼qθ(z|x̃)[log pφ(x|z)]. (3)

As we do not have an estimation nor control of the distribution of the
latent representation, it is difficult to generate new but realistic data
using the decoder of DAEs.

We train a DAE using the same encoder-decoder architecture as
shown in Table 1. The encoder and decoder networks are symmetri-
cal except for the last layer of the decoder network.

3.2. Variational Autoencoder (VAE)

VAE [9] is another version of AE that performs variational inference
by constraining the latent representation to match an explicit distri-
bution such as a normal distribution. The latent representation is
defined as follows:

(zµ, zσ) ∼ qθ(zµ, zσ|x), (4)
z = zµ + zσ �N (0, I), (5)

where zµ, zσ are the mean and standard deviation obtained from the
encoder network, andN (0, I) is the Gaussian distribution with zero
mean and unit standard deviation. The loss function is defined as

min
θ,φ

KL (qθ(z|x)‖p(z))− Eqθ(z|x)[log pφ(x|z)], (6)

where p(z) = N (z; 0, I) is the prior multivariate Gaussian distri-
bution that we want latent representation to match and KL is the
Kullback-Leibler (KL) divergence respectively. The first term reg-
ularizes the output latent distribution of the encoder and the second
term is the reconstruction loss of AE. Since the latent representa-
tion distribution is controlled, new but realistic samples can be eas-
ily generated by feeding to the decoder the randomly drawn latent
representations according to the normal distribution.

We train a VAE using the same architecture as the encoder-
decoder shown in Table 1 except that we modify the encoder net-
work by replacing the last layer with two fully connected layers,
which output zµ and zσ . We calculate the latent representation z
using Eq. (4), and feed it to the decoder network.

3.3. Adversarial Autoencoder (AAE)

Generative adversarial networks (GANs) have achieved remarkable
success in generating realistic data [10]. GANs are zero-sum two
player game where the players are the counterfeiter and the police.

The counterfeiter forges a fake sample and presents it to the police,
and the police try to distinguish between real and fake samples. In
neural network terminology, the counterfeiter is called the generator
network and the police is called the discriminator network.

Adversarial autoencoders (AAEs) [25] are a type of AE that per-
forms variational inference by constraining the latent distribution to
match a specified distribution p(z) through adversarial training. In
GAN terms, the encoder qθ(z|x) tries to fool the discriminator by
generating latent codes that mimic p(z). The min-max game can be
expressed as:

min
θ,φ

max
ψ

Ez∼p(z)[logDψ(z)]+

Ex∼pdata [log(1−Dψ(qθ(z|x)))]−
Ez∼qθ(z|x)[log pφ(x|z)],

(7)

where Dψ(·) is the discriminator, and ψ is its parameter. The first
two terms are the GAN loss involving the encoder and the discrimi-
nator, while the third term is the reconstruction loss involving the en-
coder and the decoder. AAEs rely on reconstruction loss to capture
the data distribution where adversarial loss acts as a regularization
term over latent distribution to match the prior distribution.

We use the same architecture that is used for the other AEs for
the encoder and decoder networks. We add a discriminator network
shown in Table 1 to distinguish between real and fake latent codes.

3.4. Adversarial Variational Bayes (AVB)

AVB is a training technique for VAEs that replaces the KL term with
an adversarial loss [26]. The discriminator inputs are pairs of (x, z)
where x is sampled from the real data distribution and z is either
sampled from the prior distribution or obtained from the inference
model. The discriminator tries to distinguish whether the pairs are
sampled from the prior distribution or the inference model.

The encoder-decoder model parameters are updated with Eq. (8)
where the discriminator parameters are updated with Eq. (9).

min
φ,θ

Ex∼pdataEε∼N (0,I)[Dψ(x, qθ(z|x, ε))]−

Ez∼qθ(z|x,ε)[log pφ(x|z)],
(8)

max
ψ

Ex∼pdataEε∼N (0,I)[logDψ(x, qθ(z|x, ε))]+

Ex∼pdataEz∼p(z)[log(1−Dψ(x, z))],
(9)

We modify the discriminator to accept both the data and latent
code. The latent code dimensionality is increased by an FC layer
than added to the data as a second channel. The architecture is shown
in Table 1. We modify the encoder network to accept external noise
ε ∼ N (0, I); we follow the same steps described for the discrimi-
nator network to merge ε into the data as a second channel.

4. EXPERIMENTS

4.1. The Data

In our experiments we use USC-IEMOCAP audio-visual dataset
[27] that contains scripted and improvised interactions between ac-
tors, we only use the audio files. There are five sessions totaling
about 12 hours of data, where each session includes interactions
between a female and a male. There are three annotators, where
annotations include both categorical and real-valued. Categorical
emotions include anger, disgust, excitement, fear, frustration, happi-
ness, neutral, sadness and surprise. We only considered categorical
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Fig. 2. The unweighted accuracy rating (UAR) and F1-score results
for the baseline systems and the proposed systems. F1-score is cal-
culated for each class, and their unweighted mean is presented.

annotations that are agreed by at least two annotators. This database
is commonly used in the ASER literature [13, 20, 22].

While most existing work on this database considered only four
emotion categories, we consider five, which are anger (972 samples),
excited (948), frustration (1670), neutral (1507) and sadness (1039).
In all of our experiments, we apply leave-one-session-out cross-
validation, where for each rotation we train on four sessions (from
eight speakers) and test on the other session (from the other two
speakers). This assures that the evaluation is speaker-independent.
To tune hyperparameters and decide early stopping, we reserve 20%
of training data as the validation set for each rotation.

4.2. The Baseline Models

We use the SVM based ASER system described in [4] as one of
the baseline models. We extract frame-level features that include
13 Mel-frequency cepstral coefficients (MFCCs), first four formant
frequencies and bandwidths, zero-crossing rate (ZCR), fundamental
frequency (F0), root-mean-square (RMS) energy and their first and
second-time derivatives, totaling 72 features per frame. We apply
mean, std, min, max, and range functionals to frame-level features
to obtain utterance-level features, which have a dimensionality of
72 × 5 = 360. We normalize each dimension of the utterance-
level features of the entire training samples to the range between 0
and 1; we normalize the test data using the same scaling factor. We
then train a one-against-all binary SVM for each emotion category,
with a radial-basis function kernel. During testing, we calculate the
probabilities for each class and select the maximum one as the final
emotion class for each test sample.

We design another CNN-FC network as our second baseline sys-
tem. It takes the same hand-crafted features used in the SVM base-
line with a temporal length of 64 (approximately 1 second) as inputs
to the CNN encoder network. The CNN output is then fed to an FC
network for classification. The architectures for the CNN encoder
and the classifier are shown in Table 1. Note that the input dimen-
sion of the encoder is different, which is 64× 72× 1. We train this
network with Adam optimizer and 0.0002 learning rate. We adopted
early stopping criteria, where the training stops if the validation loss
is not improved for four epochs.

For the third baseline, we construct another CNN-FC network
to take the log-Mel spectrogram directly as input, the same as the
proposed four networks. This is to directly test the benefit of the
adopted four unsupervised feature learning methods. For this pur-

pose, we use the CNN encoder and FC classifier shown in Table 1
and train them from scratch. The resulting system, however, yielded
very poor results, close to the chance performance. Therefore, we
do not include it in Figure 2. We believe that the poor results were
due to the scarcity of the training data (only 6136 samples) and the
complexity of the CNN network taking log-Mel spectrogram inputs.

4.3. Proposed Models

The AEs presented in Section 3 are trained by an Adam optimizer
with a learning rate of 0.0002. As for the training dataset, we select
the Librispeech automatic speech recognition (ASR) corpus [28],
which contains read speech that is often emotionally neutral. We
calculate a 64-bin log-Mel spectrogram for each utterance with a 32
ms window size and a 16 ms hop size. We normalize the spectrogram
values between 0 and 1 per utterance. We form training batches with
a size of 256, by selecting random segments with a temporal length
of 64 (approximately 1 seconds) from the utterances. The AEs are
trained for 200 epochs.

The proposed ASER systems described in Section 3 are trained
with the four pre-trained inference models (encoders), whose param-
eters are frozen, by an Adam optimizer with a learning rate of 0.001.
We adopt an early stopping criterion, where training ends if the val-
idation loss is not improved for four epochs. The emotion models
are trained up to 50 epochs. The number of samples in each training
batch is set to 256.

4.4. Results

We report the unweighted accuracy ratings (UARs) and F1-score in
Figure 2 for the SVM and CNN baselines and the proposed systems.
Several interesting observations are made. First, the CNN baseline
yields slightly better UAR and F1-score than the SVM method. This
suggests that deep models, taking the same hand-crafted features as
inputs, outperform shallow models. Second, for both metrics, we
are able to verify that the DAE-based unsupervised feature learn-
ing method using an external emotion-neutral dataset improves the
ASER performance over SVM and CNN baselines that do not have
the unsupervised feature learning module. This suggests that the
learned features from the external emotion-neutral dataset are better
than hand-crafted features (SVM baseline) and deep features learned
only on the emotion dataset (CNN baseline). Third, the latent vari-
able models VAE, AAE, and AVB outperform the DAE model in
terms of both metrics, although they learn features from the same
external dataset. This suggests that the latent variable models cap-
ture the more discriminative inherent structures of speech data than
the reconstruction models such as the DAE. Fourth, adversarial mod-
els AAE and AVB achieve the best result, showing the importance
of GAN loss on feature learning. In particular, AVB, which defines
the GAN loss on input-code pairs, behaves the best.

5. CONCLUSION

In this work, we systematically explored the unsupervised methods
in the context of ASER. We utilize unsupervised methods namely,
DAE, VAE, AAE, AVB and trained on general speech, and use the
learned features for ASER task. We show that these methods yield
UAR and F1-score increase over the SVM and CNN baselines. Fur-
thermore, we demonstrated that the inference models VAE, AAE,
and AVB, outperform the reconstruction model DAE for unsuper-
vised feature learning for ASER.
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