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ABSTRACT

Affect recognition is an important component towards the bet-
ter interaction between human and machines. Applications
of emotion recognition in speech can be found in several ar-
eas such as human computer interaction and call centres. In
recent years, Deep Neural Networks (DNN) have been used
with great success in recognizing emotions. In this paper,
we present a new model for continuous emotion recognition
from speech. Our model, which was trained end-to-end, is
comprised of a Convolutional Neural Network (CNN), which
extracts features from the raw signal, and stacked on top
of it a 2-layer Long Short-Term Memory (LSTM), so as to
consider the contextual information in the data. Our model
significantly outperforms, in terms of concordance correla-
tion coefficient, the state-of-the-art methods for the RECOLA
database.

Index Terms— speech emotion recognition, deep learn-
ing, end-to-end learning

1. INTRODUCTION

Recognising emotions is automatically and subconsciously
performed by humans. It is a vital process for human-to-
human communication, and thus, to achieve better human-
machine interaction, emotions need to be considered. There
are three major approaches for quantifying emotions, namely,
categorical, continuous and appraisal-based. A popular con-
tinuous emotional model is the circumplex of affect [1],
which models emotions using two independent dimensions,
i.e. arousal (relaxed vs aroused) and valence (pleasant vs
unpleasant).

However, emotion recognition is a challenging task as hu-
man emotions have fuzzy temporal boundaries. Difficulties
arise into specifying the start or the completion of an emotion.
In addition, emotions are expressed differently for each indi-
vidual, and one utterance may contain more than one emotion.

Deep Neural Networks (DNNs) have emerged the recent
years and had groundbreaking improvements in different
areas of machine learning including the continuous affect
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recognition domain. Numerous new DNNs architectures
have been proposed recently towards that direction such as
Convolutional Neural Networks (CNNs), and Long-Short
Term Memory (LSTM) networks.

A number of studies in the literature have focused on pre-
dicting emotion from speech using DNNs. Wllmer et al. [2]
were one of the first to propose a DNN architecture for Affec-
tive computing which comprised of a three layer LSTM and
was trained based on functionals of acoustic Low-Level De-
scriptors (LLDs). Stuhlsatz et al. [3] used Restricted Boltz-
mann Machines (RBM) to extract discriminative features
from the raw signal and proposed a Generalized Discriminant
Analysis (GerDA).

These studies use hand-crafted features to feed their DNN
architectures. In this paper, we propose a new end-to-end con-
volution recurrent neural network architecture for continuous
affect recognition. Despite most of the studies in the liter-
ature, the creation of our network architecture was inspired
by the way conventional speech features like Mel-Frequency
Cepstral Coefficients (MFCCs), are computed. Finally, our
model surpasses the state-of-the-art studies for the RECOLA
database.

The rest of the paper is structured as follows. Section 2
provides the most recent studies related to our work. Section 3
introduces our model and how it is related to conventional
speech features. After the description of the dataset used in
this study (Section 4), we present our results Section 5.

2. RELATED WORK

A number of studies have been proposed to model the raw
waveform directly from a DNN. More specifically, Dielman
et al. [4] trained a CNN on the raw audio signal and concluded
that the network can find both frequency decompositions and
phase invariant features. In another study, Sainath et al. [5, 6]
proposed a a Convolutional, Long Short-Term Memory Deep
Neural Network (CLDNN) model for a speech recognition
task, that is able to reduce temporal and frequency variations.
Dai et al. [7] proposed an end-to-end very deep neural net-
work to extract features to learn acoustic models.

Several studies have also been proposed for recognising
affect. For example, Schmitt et al. [8] used a bag-of-audio-
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words (BoAW) approach that was created from MFCCs and
energy Low Level Descriptors (LLDs), as feature vector and
a simple Support Vector Regression (SVR) to predict the
arousal and valence dimensions. Other studies have used
DNNs for this task. An example is the study of Trigeorgis et
al. [9] that proposed an end-to-end model which comprised
of a CNN architecture used to extract features before feed-
ing a Bi-directional LSTM (BLSTM) to model the temporal
dynamics in the data. In another study, Neumann et al. [10]
propose an attentive convolutional neural network (ACNN)
that combines CNNs with attention. The experimented with
four different input feature sets, namely, 26 logMel filter-
banks, 13 MFCCs, a prosody feature set, and (d) the extended
Geneva minimalistic acoustic parameter set (eGeMAPS) [11].

3. MODEL DESIGN

The key operation of our model is convolution,

(f ∗ h)(t) =
T∑

k=−T

f(t) · h(t− k), (1)

where f(x) indicates a kernel function, which in our case
operates on the raw signal h(k).

To reduce the dimensionality of the signal, we utilise the
max-pooling operation. To the best of our knowledge, none
of the studies in the literature mention a methodology on how
the pooling size should be selected based on the kernel size
of the convolution layer. In most cases, these are selected
experimentally.

In this work, we propose a simple methodology that is
inspired on the calculation of conventional features. More
specifically, the rate of overlap (R) between kernel size (K)
and pooling size (P ) is

R =
K − 1

K + P − 1
. (2)

The overlapping ratio R is obviously less than 1 and its
common value for creating hand-crafted features is consid-
ered most of the times around 0.5. If we use stride instead
of max-pooling to reduce the dimensionality of the signal, we
need to keep the rate of overlap around 0.5. However, we
found that using stride provides worse performance than us-
ing max-pooling. When using max-pooling, we extract the
most important information and discard the futile, while it
takes all information into consideration when using strides.
At this time, we need to keep R less than 0.5 since we do not
want it to extract the same features for successive frames. To
create our architecture we utilise this factor, so between con-
volution and max-pooling layers we consider R < 0.5 (i.e.
R ≈ 0.4) for all layers.

3.1. Proposed Model

Our proposed model, which is depicted in figure 1, is de-
scribed below.

Input. After we preprocess the raw signal to have zero
mean and unit variance, we segment it to 20 s sequences long
and use them as input. At 16 kHz this corresponds to 320 000-
dimensional input vector.

Temporal Convolution. We use 64 time impulse filters
with kernel size of 8 to extract information from the raw sig-
nal.

Max-pooling. Based on the previous kernel size (8), we
apply max-pooling with a size of 10 to decrease the frame
rate of the signal and keep the most descriptive features.

Temporal Convolution. Going deeper we want to extract
a larger number of high-level abstractions. For this purpose,
we convolve in the time domain with a kernel size of 6 and
with a channel size of 128.

Max-pooling. To keep the overlap rate below 1, we pool
across the time domain with a size of 8.

Temporal Convolution. The last convolution layer pro-
vides us with an even higher level of abstractions. We keep
the kernel size to 6 and increase the filter size to 256.

Max-pooling. Considering the kernel size of the previous
convolution layer, we perform a max-pooling across time with
a size of 8.

Recurrent Neural Network. We utilise 2-layers of LSTM
to capture the contextual information in the data.

Due to the high number of parameters our model contains
we use dropout regularisation after each pooling layer, with a
probability of 0.5.

3.2. Objective function

Most of the studies in the literature use the Mean Squared Er-
ror (MSE) as a loss function to train their model. However, a
new trend in the speech analysis domain has emerged to use a
loss function based on the concordance correlation coefficient
(CCC), which has been shown to provide better results [9, 12].
We utilise the same loss function (Lc) based on the CCC (ρc).

Lc =1− ρc = 1−
2σ2

xy

σ2
x + σ2

y + (µx − µy)2
(3)

=1− 2σ2
xyψ

−1, (4)

where ψ = σ2
x + σ2

y + (µx − µy)
2 and µx = E(x),µy =

E(y),σ2
x = var(x),σ2

y = var(y) and σ2
xy = cov(x, y). The

gradient of the loss to be propagated from the last layer with
respect to the weights is

∂Lc

∂x
∝ 2

σ2
xy(x− µy)

ψ2
+
µy − y
ψ

. (5)

5090



Input raw waveform at 16kHz

C
onv8-64 

C
onv6-128 

C
onv6-256 

LS
TM

-256

LS
TM

-256

Convolution layers Recurrent layers Output label at 25Hz

Maxpool 10 Maxpool 8 Maxpool 8
Arousal

Valence

Fig. 1. The proposed convolutional recurrent neural network for speech emotion recognition. A CNN is used to extract features
from the raw signal before feeding them to a 2-layer LSTM network for the final prediction.

4. DATASET

To test our methodology and architecture, we utilise the RE-
mote COLlaborative and Affective (RECOLA) database in-
troduced by Ringeval et al. [13]. A subset of the database was
used in the Audio/Visual Emotion Challenge and Workshop
(AVEC) 2015, and 2016 challenges [14, 15]. However, in
this study, we utilise its full portion, which contains 46 differ-
ent recordings divided into three different parts (train, devel,
and test) while balancing the gender, age and mother tongue.
Four modalities are contained in the database, namely, audio,
video, electrocardiogram (ECG), and electro-dermal activity
(EDA). The original labels of the RECOLA are re-sampled
at constant frame rate of 40 ms. The data is then averaged
over all raters by considering the inter-evaluator agreement,
to provide a gold standard [16]. Each record is 300 s audio
data with a sampling rate of 16 kHz. Table 1 contains more
details for each portion of the dataset.

Train Valid Test
female/male 10/6 9/6 8/7
French 11 11 11
Italian 3 2 3
German 2 1 1
Portuguese 0 1 0
age µ(σ) 22.3(3.4) 21.6(2.1) 21.2(2.0)

Table 1. The partitioning of the RECOLA dataset

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

The optimisation method we used to train our model, through-
out all experiments, is the RMSProp optimizer [17] with a

fixed learning rate of 10−4, a decay rate of 0.9, and momen-
tum of 0.1. The mini-batch size utilised was 5 with a sequence
length of 500 frames (20 s) when training and the model is
tested on the entire records without segmentation. In addi-
tion, as mentioned earlier, regularisation was used to prevent
overfitting, and in particular dropout [18] was used after the
max-pooling layers with probability 0.5. The model is se-
lected based on the highest CCC before post processing on
the validation partition. Finally, a chain of post processing
method is applied, namely, median filtering (size of window
was between 0.04 s and 20 s) [14], centering (by finding the
ground truth’s and the prediction’s bias) [19], scaling (with
scaling factor the ration between the standard deviation of the
ground truth and the prediction) [20] and time-shifting (for-
ward in time with values between 0.04 s and 10 s) [21]. Any
of these method is kept when we observe a better ρc on the
validation set, and then applied to the test partition with the
same configuration.

5.2. Results

We first compare ourselves with the study performed by Tri-
georis et al. [9] as they also use DNNs in an end-to-end man-
ner. We should note here that they consider a sequence length
of 6 s as input to the network. However, we increase the
length of the input sequence (i.e., 20 s) so that we can make
the model capture longer temporal dynamics. We believe that
both capturing longer temporal dynamics and the fact that our
model is deeper have a high-impact on our model’s perfor-
mance.

The results depicted in Table 2 clearly show that our
model outperforms the work by Trigeoris et al. [9] in both
the arousal and valence dimensions for both the validation
and test sets. More particularly, for the test set and for the
arousal dimension with almost 3% absolute value and for the
valence with a higher magnitude, i.e., 6%, absolute value.
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Arousal Valence
Han et al. [16] .729 (.785) .309 (.364)
Han et al. [22] .744 (.774) .377 (.412)

Trigeorgis et al. [9] .686 (.741) .261 (.325)
Schmitt et al. [8] .753 (.793) .430 (.550)

Proposed .787 (.815) .440 (.502)

Table 2. Performance comparison (w.r.t ρc) between the pro-
posed method and other state-of-the-art methods. In paren-
thesis are the performance obtained on the validation set.

These results indicate the effectiveness of our model, and
as a consequence the effectiveness of our methodology in
constructing DNNs.

We also compare our model with studies that utilise hand-
crafted features for the emotion recognition task and produce
state-of-the-art results on the RECOLA database. Table 2
depicts the best results of the studies with respect to the
arousal dimension, as it can be more easily predicted from
speech, and hence provide better results than the prediction
of the valence dimension. In particular, Schmitt et al. [8]
method produces the best results among the others, in both
the arousal and valence dimensions. However, our model
outperforms their method for both of the continuous affect
dimensions. More specifically, for the prediction of the va-
lence and arousal dimensions our model outperforms Schmitt
et al. method with 1% and 3% absolute value, respectively.
We should also mention that Schmitt et al. method uses hand-
crafted features such as MFCCs, while our model was trained
end-to-end with the architecture inspired by the creation of
hand-crafted features.

A very recent study that utilised the full RECOLA dataset,
as in our study but for multimodal input (audiovisual) was
proposed by Tzirakis et al. [12]. The results obtained on the
test set by the authors when utilising both the training and
validation set for their multimodal model is .789, only 0.2%
absolute value difference with our model that uses only the
audio input and was trained only on the training set. For com-
pleteness, we mention that in the valence their method perfor-
mance was 0.691 which is much higher than ours. This was
expected as their model utilises also the video input which has
been shown to more easily predict the valence dimension.

5.3. Depicting Arousal and Valence Predictions

To illustrate the effectiveness of our model, we choose to
show the results obtained in a test video along with the ground
truth. Figure 2 depicts the results. As can be observed our
model can fit quite accurately the ground truth on the arousal
dimension. However, this is not the case for the valence di-
mension.

Fig. 2. Results obtained for a test subject for the arousal (Top)
and valence (Bottom) dimensions.

6. CONCLUSION

In this paper, we propose a new convolution recurrent neural
network structure for end-to-end speech emotion recognition.
The proposed model achieve state-of-the-art results, with
respect to the concordance correlation coefficient for both
arousal and valence in comparison to previous studies which
utilised the RECOLA database. Furthermore, we show the
relationship between kernel and pooling size of the 1-d layers
of our model, and window and step size for conventional
audio features like MFCCs.

In future work, we will try deeper CNN models for audio
analysis, utilising larger databases. We believe that we can
acquire better performance for different audio analysis task
using the raw signal. However, we still need to follow the
basic idea for kernel size and pooling size when designing
our model.
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