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ABSTRACT

Most speech processing techniques use magnitude spectro-
grams as front-end and are therefore by default discarding
part of the signal: the phase. In order to overcome this limi-
tation, we propose an end-to-end learning method for speech
denoising based on Wavenet. The proposed model adaptation
retains Wavenet’s powerful acoustic modeling capabilities,
while significantly reducing its time-complexity by eliminat-
ing its autoregressive nature. Specifically, the model makes use
of non-causal, dilated convolutions and predicts target fields in-
stead of a single target sample. The discriminative adaptation
of the model we propose, learns in a supervised fashion via
minimizing a regression loss. These modifications make the
model highly parallelizable during both training and inference.
Both quantitative and qualitative evaluations indicate that the
proposed method is preferred over Wiener filtering, a common
method based on processing the magnitude spectrogram.

Index Terms— Speech denoising, convolutional neural
networks, end-to-end learning, deep learning, audio

1. INTRODUCTION

Speech recognition is one of the research areas where machine
learning has had a very strong impact. However, until today
it has been standard practice not to work directly in the time-
domain, but rather to explicitly use time-frequency representa-
tions as input [1, 2] – for reducing the high-dimensionality of
raw waveforms. Similarly, most techniques for speech denois-
ing use magnitude spectrograms as front-end [3, 4, 5]. Never-
theless, this practice comes with its drawbacks of discarding
potentially valuable information (phase) and utilizing general-
purpose feature extractors (magnitude spectrogram analysis)
instead of learning specific feature representations for a given
data distribution. Most recently, neural networks have shown
to be effective in handling structured temporal dependencies
between samples of a discretized audio signal. For exam-
ple, consider the most local structure of a speech waveform
(≈ tens of milliseconds). In this range of context, many sonic
characteristics of the speaker (timbre) can be captured and lin-
guistic patterns in the speech become accessible in the form of
phonemes. It is important to note that these levels of structure
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are not discrete, making techniques that explicitly focus on dif-
ferent levels of structure inherently suboptimal. This suggests
that deep learning methods, capable of learning multi-scale
structure directly from raw audio, may have great potential in
learning such structures. To this end, discriminative models
have been used in an end-to-end learning fashion for speech
classification [6, 7, 8]. But waveforms have also been used
for generative tasks [9, 10, 11, 12] and, interestingly, most of
these models are autoregressive [9, 10, 11] – except one based
on a generative adversarial network [12]. We are not aware
of any generative model for raw audio based on variational
autoencoders. This discussion motivates our study in adapting
Wavenet’s model (an autoregressive generative model [11]) for
speech denoising. We aim to overcome the inherent limitations
of using magnitude spectrogram front-ends by learning multi-
scale hierarchical representations from raw audio. Some work
in this direction already exists. Back in the 80’s, Tamura et al.
[13] used a 4-layered feed-forward network operating directly
in the raw-audio domain to learn a noise-reduction mapping.
And recently: Pascual et al. [12] proposed the use of an end-to-
end generative adversarial network for speech denoising, and
Qian et al. [14] used a Bayesian Wavenet for speech denoising.
In all 3 cases, they provide better results than their counterparts
based on processing magnitude spectrograms.

The following lines introduce the original Wavenet archi-
tecture. Section 2 describes the modifications we propose, and
in Section 3 we discuss our experimental results. Wavenet
is the audio domain adaptation of the PixelCNN generative
model for images [15, 16] and is capable of synthesizing natu-
ral sounding speech [11]. This autoregressive model shapes
the (discrete) probability distribution of the next sample given
some fragment of previous samples. The next sample is pro-
duced by sampling from this distribution. An entire sequence
of samples is produced by sequentially feeding previously
generated samples back into the model. A high-level visual
depiction of the model is presented in Figure 1. Some of
Wavenet’s key features are presented below:

Gated units. As in LSTMs, sigmoidal gates control the
activations’ contribution in every layer:

zt′ = tanh(Wf ∗ xt)� σ(Wg ∗ xt),
where ∗ and � denote convolution and element-wise multipli-
cation, respectively. f , t, t′ and g stand for filter, input time,
output time and gate indices. Wf and Wg are convolutional
filters. Figure 2 (Left) depicts how sigmoidal gates are utilized.
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Fig. 1. Overview of Wavenet.

Fig. 2. Left – Residual layer. Right – Causal, dilated convolu-
tions with increasing dilation factors.

Causal, dilated convolutions. Wavenet makes use of
causal, dilated convolutions [11]. It uses a series of small
(length = 2) convolutional filters with exponentially increas-
ing dilation factors. This results in an exponential receptive
field growth with depth. Causality is enforced by asymmetric
padding proportional to the dilation factor, which prevents ac-
tivations from propagating back in time – see Figure 2 (Right).
Each dilated convolution is contained in a residual layer, con-
trolled by a sigmoidal gate with an additional 1x1 convolution
and a residual connection – see Figure 2 (Left).

µ-law quantization. When using a discrete (softmax) out-
put distribution, it is necessary to perform a more coarse 8-bit
quantization to make the task computationally tractable. This
is accomplished via a µ-law non-linear companding followed
by an 8-bit quantization (256 possible values):

f(xt) = sign(xt)
ln(1+µ|xt|)
ln(1+µ)

Skip connections. These offer two advantages: (i) they fa-
cilitate training deep models [17], and (ii) allow the network to
explicitly incorporate features extracted at several hierarchical
levels into its final prediction. Figure 1 and 2 (Left) provide
further details in how skip connections are used.

Context stacks. These deepen the network without in-
creasing the receptive field length as drastically as increasing
the dilation factor does. This is achieved by simply stacking a
set of layers, dilated to some maximum dilation factor, onto
each other – and can be done as many times as desired [11].
For example, Figure 2 (Right) is composed of a single stack.

Time-complexity. A significant drawback of Wavenet is
its sequential (non-parallelizable) generation of samples. This
limitation is strongly considered in our denoising model.

Fig. 3. Overview of the speech-denoising Wavenet.

Fig. 4. Predicting on a target field – orange lines: non-causal,
dilated convolutions predicting a single sample.

2. WAVENET FOR SPEECH DENOISING

Speech denoising techniques aim to improve the intelligibility
and the overall perceptual quality of speech signals with intru-
sive background-noise. The problem is typically formulated as
follows: mt = st+bt, where: mt ≡mixed signal, st ≡ speech
signal, bt ≡ background-noise signal. The goal is to estimate
st given mt. Speech denoising, while sharing many properties
with speech synthesis, also has several unique characteristics
that motivated the design of this Wavenet adaptation. A high-
level visual depiction of the proposed model is presented in
Figure 3, and its key features are presented below:

Non-causality. Contrary to audio synthesis, in speech de-
noising, some future samples are generally available to help
make more well informed predictions. Even in real time appli-
cations, when a few milliseconds of latency in model response
can be afforded, the model has access to valuable information
about samples occurring shortly after a particular sample of
interest. As a result, and given that Wavenet’s time-complexity
was a major constraint, the autoregressive causal nature of it
was removed in our model. A logical extension to Wavenet’s
asymmetric dilated convolution pattern, shown in Figure 2,
is to increase the filter length to 3 and perform symmetric
padding at each dilated layer. If the sample we wish to en-
hance is now taken to be at the center of the receptive field,
this has the effect of doubling the context around a sample of
interest and eliminating causality – see Figure 4, in orange.
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Real-valued predictions. Wavenet uses a discrete soft-
max output to avoid making any assumption on the shape of
the output’s distribution, what is suitable for modeling multi-
modal distributions. However, early experiments with dis-
crete softmax outputs proved disadvantageous – the potentially
multi-modal output distribution introduced artifacts into the
denoised signal. This suggests that real-valued predictions (as-
suming uni-modal gaussian-shaped output distributions) seem
to be more appropriate for our problem. Moreover experiments
with discrete softmax outputs resulted in output distributions
with high variance, signifying low confidence with the value
having highest probability. µ-law quantization was also dis-
advantageous because it amplified the background-noise. For
these reasons, the proposed model learns to directly predict
raw audio via minimizing a regression loss – what enables
considering alternative costs, as the one used for this study:
L(ŝt) = |st− ŝt|+ |bt− b̂t| where b̂t = mt− ŝt, see Figure 3.

Discriminative model. The proposed model is not autore-
gressive and its output is not explicitly modeling a probability
distribution, but rather the output itself. Furthermore, the
model is trained in a supervised fashion – by minimizing a
regression loss function. As a result: the proposed model is no
longer generative (like Wavenet), but discriminative.

Final 3x1 filters. Since the architecture is not autoregres-
sive, previously generated samples are not fed back into the
model to inform future predictions – which enforces time con-
tinuity in the resulting signal. Early experiments produced
waveforms with sporadic point discontinuities that sounded
disruptive. Replacing the kernels of the final layers with 3x1
filters instead of 1x1 filters reimposed this constraint.

Target field prediction. The proposed model does not
predict just one, but a set of samples in a single forward propa-
gation – see Figure 4. Parallelizing the inference process from
1 sample to on the order of 1000 samples offers significant
memory and time savings. This is because overlapping data
is used for predicting neighboring samples, and by predicting
target fields these redundant computations are done just once.
The receptive field length (rf ) of the model is the number of
input samples that go into the prediction of a single denoised
output sample. In order to maintain that every output sample
in the target field (tf ) has a full receptive field of context con-
tributing to its prediction, the length of the fragment presented
to the model must be equal to: rf+(tf−1). Finally, note that
the cost is computed sample-wise – during training, individual
sample costs of a target field are averaged.

Conditioning. The model is conditioned on a binary-
encoded scalar corresponding to the identity of the speaker.
This condition value is the bias term in every convolution op-
eration. Condition values represent each of the 28 speakers in
the training set. We add an auxiliary code (all zeros) denoting
any speaker identity so that the trained model can be used for
unknown speakers. The same training data is presented to the
model either conditioned to its speaker identity or to zeros.

Noise-only data augmentation. A form of augmentation

in which 10% of training samples contain only background-
noise was also employed after observing that our model had
difficulties producing silence.

One-shot denoising. By default, the network is presented
with a noisy speech fragment and the condition value is set
to zero. The trained model denoises the input in batches,
iteratively appending each denoised fragment to the previous.
But note that the fully-convolutional nature of the model makes
the model flexible in the time-dimension – which permits
denoising audio of arbitrary length. As a result of this feature,
our model is capable of denoising an entire piece of audio in
one-shot – given that sufficient memory is available1.

3. EXPERIMENTAL RESULTS

The dataset we used [12, 18] was generated from two sources:
speech data was supplied by the Voice Bank corpus [19] while
environmental sounds were provided by the Diverse Environ-
ments Multichannel Acoustic Noise Database (DEMAND)
[20]. The subset of the Voice Bank corpus we used features 30
native english speakers from different parts of the world read-
ing out ≈ 400 sentences – 28 speakers are used for training
and 2 for testing. The subset of DEMAND that we used pro-
vides recordings in 13 different environmental conditions such
as in a park, in a bus or in a cafe – 8 are mixed with speech
during training and 5 are used during testing. During training,
2 artificial noise classes were added – in total 10 different
noise classes are available during training. Training samples
are synthetically mixed at one of the following four signal-to-
noise ratios (SNRs): 0, 5, 10 and 15dB with one of the 10
noise types. This results in 11,572 training samples from 28
speakers under 40 different noise conditions. Test samples are
also synthetically mixed at one of the following four different
SNRs: 2.5, 7.5, 12.5 and 17.5dB with one of the 5 test-noise
types – resulting in 20 noise conditions for 2 speakers. As a
result, the test set features 824 samples from unseen speak-
ers and noise conditions. Audios are on average 3 seconds
long and are subsampled to 16kHz. No preprocessing is used
(i.e.: pre-emphasis filtering [12] or µ-law quantization[11]),
allowing the pipeline to be end-to-end in the strictest sense.

The proposed model features 30 residual layers as in Fig-
ure 2 (Left). The dilation factor in each layer increases in the
range 1, 2, ..., 256, 512 by powers of 2. This pattern is repeated
3 times (3 stacks). Prior to the first dilated convolution, the
1-channel input is linearly projected to 128 channels by a stan-
dard 3x1 convolution to comply with the number of filters in
each residual layer. The skip connections are 1x1 convolutions
also featuring 128 filters – a RELU is applied after summing
all skip connections. The final two 3x1 convolutional layers
are not dilated, contain 2048 and 256 filters respectively and
are separated by a RELU. The output layer linearly projects
the feature map into a single-channel temporal signal by using

1When using the model described below on a Titan X Pascal (12GB of
VRAM), it is possible to denoise up to 25s of audio with one-shot denoising.
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a 1x1 filter. This setup results in a receptive field of 6,139 sam-
ples (≈ 384ms) and a target field of 1601 samples (≈ 100ms),
optimized to adhere to our memory constraints. The relatively
small size of the model (6.3 million parameters) together with
its parallel inference on 1601 samples at once, results in a
denoising time of ≈ 0.56 seconds per second of noisy audio
on GPU. Code and trained models are available online2.

In our first study we quantify the quality of the denoised
speech along three dimensions [21]: signal distortion (with
SIG), background-noise interference (with BAK) and overall
quality (with OVL). These measures operate in a 1–5 range,
aiming to computationally approximate the Mean Opinion
Score (MOS) that would be produced from human perceptual
trials. We set as baselines: (i) the noisy signal, and (ii) a signal
processing method based on Wiener filtering – widely used
for speech-denoising [22, 23] or audio source-separation [24].
The baseline algorithm uses a Wiener filtering method based
on a priori SNR estimation [23], as implemented here3.

Table 1. Quantitative results averaged across all SNRs in the
test set. Higher scores are better. Different parameters are stud-
ied for Wavenet-based models: noise-only data augmentation
(0 and 10%) and target field length (1, 101 and 1601 samples).

Wavenet-based SIG BAK OVL
0%, 1 sample* 1.37 1.79 1.28

0%, 101 samples* 1.67 2.07 1.50

0%, 1601 samples 3.62 3.23 2.98

10%, 1601 samples 2.95 3.12 2.49

Wiener filtering 3.52 2.93 2.90

Noisy signal 3.51 2.66 2.79

*Computed on perceptual test set.
In Table 1 one observes that training with longer target

fields is crucial for training models capable of denoising. In ad-
dition, we observe that models with a small target field length
require impractically long inference times (as a result of many
redundant computations). Due to this, the results for smaller
target field lengths are computed with the 20-sample percep-
tual test set (described below). Further, note that the “0%,
1601 samples” model achieves the best results across all met-
rics. However, informal listening clearly shows that training
with 10% noise-only augmentation allows the model to pro-
duce silence in moments where no speech is present (without
degrading the speech signal), which is perceptually pleasant
when aurally evaluating denoised samples. When comparing
the proposed model with the baseline Wiener filtering method
one observes that OVL and SIG results are comparable, show-
ing that Wiener filtering similarly preserves the quality of the
speech signal. However, the proposed method removes the
background-noise more effectively than Wiener filtering.

2https://github.com/drethage/
speech-denoising-wavenet

3https://www.crcpress.com/downloads/K14513/
K14513_CD_Files.zip

In our second study, we conducted perceptual tests with 33
participants to get subjective feedback on the effectiveness of
the speech-denoising Wavenet. 20 audio samples were chosen
to compose the perceptual test set: 5 samples for each of the
four test SNRs, with an equal number of samples coming from
each of the 2 speakers in the test set. Aside from these con-
straints, the samples were chosen randomly. Participants were
presented with 4 variants of each sample: i) the original mix
with speech and background-noise, ii) clean speech, iii) speech
denoised by Wiener filtering, and iv) speech denoised with
the best performing Wavenet – with 10% noise-only data aug-
mentation and predicting a target field length of 1601 samples.
The first two variants were presented as references. Partic-
ipants were asked to “give an overall quality score, taking
into consideration both: speech quality and background-noise
suppression”4 for each of the last two variants. Participants
were able to give a score between 1–5, with a 1 being de-
scribed as “degraded speech with very intrusive background”
and a 5 being “not degraded speech with unnoticeable back-
ground” [21]. MOS quality measurement is obtained by av-
eraging the scores from all participants. Table 2 presents the
results of the perceptual evaluation, showing that participants
significantly preferred (t-test: p-value < 0.001) the proposed
method over the one based on Wiener filtering.

Audio samples are available online for listening5.

Table 2. Subjective MOS measures (averaged across all SNRs)
on perceptual test set. From 1–5, higher scores are better.

Measurement Wiener filtering Proposed Wavenet
MOS 2.92 3.60

4. CONCLUSION

We have presented a discriminative adaptation of Wavenet’s
model for speech denoising that features a non-causal and non-
autoregressive architecture. The model is able to predict target
fields instead of single samples, which significantly reduces the
time-complexity of the model – enabling one-shot denoising.
Further, we propose using a noise-only data augmentation
strategy that helps the model to produce silences when only
background noise is present. Perceptual tests show that our
model’s estimates are preferred over the ones based on Wiener
filtering. This confirms that it is possible to learn mutli-scale
hierarchical representations from raw audio instead of using
magnitude spectrograms as front-end for speech denoising.
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