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ABSTRACT

In this work, we present a variant of multiple deep neural
network (DNN) based speech enhancement method. We directly es-
timate clean speech spectrum as a weighted average of outputs from
multiple DNNs. The weights are provided by a gating network. The
multiple DNNs and the gating network are trained jointly. The ob-
jective function is set as the mean square logarithmic error between
the target clean spectrum and the estimated spectrum. We conduct
experiments using two and four DNNs using the TIMIT corpus with
nine noise types (four seen noises and five unseen noises) taken
from the AURORA database at four different signal-to-noise ratios
(SNRs). We also compare the proposed method with a single DNN
based speech enhancement scheme and existing multiple DNN
schemes using segmental SNR, perceptual evaluation of speech
quality (PESQ) and short-term objective intelligibility (STOI) as the
evaluation metrics. These comparisons show the superiority of pro-
posed method over baseline schemes in both seen and unseen noises.
Specifically, we observe an absolute improvement of 0.07 and 0.04
in PESQ measure compared to single DNN when averaged over all
noises and SNRs for seen and unseen noise cases respectively.

Index Terms— Deep neural networks, speech enhancement,
gating network.

1. INTRODUCTION

Several methods exist for speech enhancement including Wiener
filtering [1], perceptually enhanced KLT [2], minimum mean square
error (MMSE) estimation [3] and deep neural networks (DNN) [4].
These speech enhancement methods can be grouped into two broad
categories, namely, statistical approaches like Wiener filtering [1],
minimum mean square estimation (MMSE) [5] etc and data driven
methods like neural networks [6]. In statistical methods, particular
probabilistic models are assumed for speech and noise. Ephraim
et al. [5], proposed a minimum mean square estimation technique
of clean speech. It is based on the independent complex Gaussian
distribution assumption on speech and noisy spectral coefficients.
Assuming that the logarithmic error is perceptually more suitable
for speech enhancement, a logarithmic minimum mean square es-
timation [3] technique was proposed. These statistical algorithms
require a running estimate of noise and clean speech variances.
However, such estimates are typically poor for highly non-stationary
noises. In addition, these algorithms work under the assumption that
spectral coefficients are uncorrelated in a speech frame. However,
it is well known that spectral coefficients are correlated in different
frequencies as well as at different time instants [7].

Over the last decade, the data driven methods have been shown
to provide better results than traditional statistical methods. Among
these data driven methods, neural networks are the state of the art
techniques. Hence neural networks [8–10] are employed for speech
enhancement as well. Tamura et al. [8], proposed to use a shallow

network to estimate the clean speech with input to the network set
as noisy speech. But these algorithms did not provide satisfactory
results due to less amount of data and smaller network size. In addi-
tion the bigger networks suffered from the problem of getting stuck
in local minima. In recent years, a number of modifications (both
in training of the neural network, and in architecture) are proposed
to alleviate these inherent problems of neural networks. Hinton et
al. [11], proposed a greedy layer wise training algorithm. However,
later, better random initialization [12] techniques and better activa-
tion functions like relu [13], have been shown to provide similar (or
better) performance. Xu et al. [4], proposed a DNN based speech en-
hancement technique, where the DNN is initialized with the weights
provided by a restricted boltzmann machine (RBM) which is trained
layer wise.

There are a number of data driven speech enhancement tech-
niques where multiple experts are used. For example, a mixture
maximum model was proposed by Amit et al. [14], which is based
on broad phoneme classes. However, it requires prior enhanced
Mel frequency cepstral coefficient (MFCC) vectors specific to each
phoneme, which makes the algorithm less general across different
speakers and also with respect to the intra broad phoneme class vari-
ability. A phoneme information based approach using DNNs was
proposed by Wang et al. [15]. The algorithm involves training of
forty DNNs, one for each phoneme class to estimate the ideal ratio
mask (IRM). During testing, an automatic speech recognition (ASR)
system is used to predict the correct phoneme label. The DNN corre-
sponding to the predicted phoneme label is used to estimate the IRM.
However, this method may result in speech quality degradation due
to the poor performance of ASR system in noisy conditions. Chazan
et al. [16] employed a similar method where speech presence prob-
ability (SPP) is estimated instead of IRM and a classifier network is
used in place ASR system.

We hypothesize that the method of clustering the input data
based on phoneme specific information during training [15], [16],
may not be optimal. This could be because a clustering method
different from that using phonetic groups could be a better choice
for enhancing speech. Therefore, in our work, we propose an en-
hancement scheme that doesn’t restrict the system to be trained
with phonetic information. Moreover, unlike systems that require
about forty DNNs [16], in the proposed method of using multiple
DNNs, we alleviate the need for using such a complicated network.
Multiple networks based techniques for learning have been used in
the past. For example, a mixture of experts was proposed by Jacobs
et al. [17]. It involves partitioning the training data and learning a
separate network for each partition. These two tasks are done in
conjunction. However, each expert is limited to a linear regression
model. In the proposed work we employ a similar architecture using
DNNs for speech enhancement. Although such an architecture is
also used by Chazan et al. [18], it differs from the proposed method
with regard to what is being estimated by the network. Specifically,
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while Chazan et al. [18], use the network to estimate the speech
presence probability (SPP), we employ the network to estimate the
clean speech spectrum, directly. Thus, our multiple DNN network,
involves the joint training of N DNNs in conjunction with a gating
network, such that the final estimate of the clean spectrum is a linear
combination of the outputs from N DNNs, weighed by the output of
the gating network.

We conduct experiments with clean speech utterances taken
from the TIMIT corpus, nine noise types taken from AURORA
database (four among which are used for training) in four SNR
conditions. The performance metrics used are perceptual evalua-
tion of speech quality (PESQ) [19], segmental signal-to-noise ratio
(seg SNR) and short-time objective intelligibility (STOI) [20]. We
compare the proposed method against single DNN with different
number of parameters. We also compare with SPP based multiple
DNN system. We observe that the proposed method outperforms
these baseline schemes in most cases. Specifically we observe an
improvement of 0.07 in PESQ (averaged across all SNRs and seen
noises) for seen noises compared to the single DNN case. When
averaged across unseen noise cases the corresponding improvement
is 0.04 over single DNN case.

2. SPEECH ENHANCEMENT USING MULTIPLE DEEP
NEURAL NETWORKS

Speech is composed of a rich variety of spectro-temporal struc-
tures. These structures largely vary with a number of factors includ-
ing different types of sounds, i.e., phonemes and speakers. A single
DNN system may not capture these varying structures completely,
thus giving rise to the need for employing multiple DNNs [16] [15].
As shown in Fig 1, the multiple DNN based system involves N
DNNs, each contributing to the final enhanced speech, and a gat-
ing network which provides the weights to combine the outputs of
the N DNNs. In general the final output can be obtained as,

ŷ =

N∑
k=1

pk(x)fk(x), (1)

where fk(x) is the output of kth DNN and pk(x) is the correspond-
ing weight for the kth output for the input x. Single DNN is a trivial
case corresponding to N = 1 and p1(x) = 1, ∀x.

There are three major aspects involved in a multiple DNN sys-
tem for speech enhancement: 1) the number DNNs to be chosen,
2) the target output representation, 3) the objective function used to
train the network.

Chazan et al. [16], used forty DNNs (with all having same ar-
chitecture) corresponding to each phoneme. However, such a net-
work typically overfits the data, since there won’t be enough data for
certain phonemes compared to other ones. In addition, due to high
number of classes, (i.e., the number of phonemes) the error on cross
phonemes (i.e., when a DNN trained on a particular phoneme en-
counters other phonemes during testing) will play a significant role.
This, in turn, affects the overall performance. Therefore, using a
large number of DNNs may not be ideal in such a scenario. In-
stead we can use less number of DNNs so that each DNN can be
trained well with reasonable amount of data. In this regard, Chazan
et al. [18], used lesser number of DNNs and trained the entire sys-
tem jointly. In other words, all the N DNNs and the gating network
are trained jointly in a completely data driven way. The objective
function used in this case is given by,

Er =

M∑
i=1

d
(
yi,

N∑
k=1

pk(xi)fk(xi)
)
, (2)

Fig. 1: Multiple DNN based speech enhancement system

where d() is the error metric used for training. xi and yi are ith

training example for noisy speech input, clean speech target output
respectively. ŷi is the estimated clean speech. However, the target
output in the work by Chazan et al. [18], was set as SPP. In this work
we directly try to estimate clean speech spectrum from such a net-
work and experimentally demonstrate that the use of clean speech
spectrum as the output representation results in a better speech en-
hancement performance. In the context of using an objective func-
tion, Jacobs et al. [17], proposed to use the following objective func-
tion,

Er = −
M∑
i=1

log

(
N∑

k=1

pk(xi) exp
(
− 1

2
‖ yi − fk(xi) ‖

))
, (3)

which could enable each DNN to perform well on certain region
of input space. In the current work, in addition to using eq. (2),
we also experiment with eq. (3) as objective function for training
and then examine which of these objective functions, when used for
training the multiple DNN system, results in a better enhancement
performance.

3. EXPERIMENTS
3.1. Database

Clean speech utterances are taken from TIMIT [21]. It consists
4620 recordings in training set and 1680 recordings in test set. The
sampling frequency of these recordings is 16 kHz. The noise signals
used for the experiments are white, babble, restaurant, street, airport,
car, exhibition, subway and train. Except white noise all noise files
are taken from AURORA [22] database. White noise (white gaus-
sian noise) is synthetically generated. The sampling rate of the noise
signals is 8 kHz. To match the sampling frequencies, we downsam-
ple clean speech utterances of TIMIT to 8 kHz.

3.2. Experimental setup

The noise signals used for training (seen noises) are white, bab-
ble, restaurant and street. We add noise signals to clean speech at
global SNRs of -5, 0, 5, and 10dB. The frame length is set to be
256 with 50% overlap. The TIMIT utterances are added with train-
ing noises at various SNRs. For every noise and SNR combinations,
100k frames are randomly picked from the entire noisy TIMIT train-
ing set. This results in a total of 1600k frames (100k frames × 4
noises × 4 SNRs). 80% of these frames are used for training and
remaining 20% are used as the validation set. For testing we use 250
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TIMIT test utterances added with nine noises (i.e., four seen training
noises and five unseen noises) at four different SNRs.

Proposed method: We use four (N=4) DNNs and a gating net-
work, each of which are 3 layer deep. The number of units at each
layer is set to be 512. This whole network with target output set as
clean speech spectrum is referred to as M-DNNP4. The activation at
each layer is set to be relu. We also test the proposed method using
two DNNs and a gating network with same number of hidden layers
as that of M-DNNP4. We also examine the proposed system with
N = 2. We consider two such cases based on the number of units at
each layer viz 1024 and 512 units. These systems are referred to as
M-DNN-1P2 and M-DNN-2P2 respectively. The multiple DNN sys-
tem with four DNNs and 1024 units at each layer, is found to overfit
the data. Hence, we do not report results with such a network. The
objective function used for training is given by eq. (2).

Single DNNs: For the single DNN baseline, we use a 3 layered
architecture with equal number of units at each layer. We have two
variants of these DNNs: 1) S-DNN1 which has 1024 units at each
layer and 2) S-DNN2 which has 1324 units at each layer. The num-
ber of units at each layer in S-DNN2 is chosen such that, it results
in a number of parameters identical to that of M-DNNP4. The ac-
tivation at each layer is set to be relu. Single DNN with number of
parameters equated to that M-DNN-1P2 is found to overfit the data.
Hence, the corresponding results are not reported.

SPP based speech enhancement: Chazan et al. [18], proposed
to use a similar network for speech enhancement except that the tar-
get output is set as SPP. The clean speech log spectrum ŷ is estimated
using the predicted SPP as follows,

ŷ = x− β(1− ρ), (4)

where β is the attenuation constant, ρ is the predicted SPP and x
is the noisy speech log spectrum. For this approach, the network
architecture is same as that of M-DNNP4 except the target output
is set as SPP. In addition, the output activation is set to be sigmoid
(as proposed in [18]) instead of relu. This system is referred as M-
DNNS4.

Speech enhancement with competitive learning: We also ex-
periment with the objective function given in eq. (3). The network
architecture is kept as that of M-DNNP4 except the objective func-
tion to train the network.

We experiment with architectures for the SPP and competitive
learning methods, similar to those of M-DNN-1P2 , M-DNN-2P2

and M-DNNP4. Among these, we observe that an architecture simi-
lar to that of M-DNNP4 performs the best for both these cases, and
hence, report the results only for this variant.

3.3. DNN training parameters

We train every system for 50 epochs with early stopping crite-
ria [23]. The optimizer used is adam with default parameters [24].
The input to each system is normalized speech spectrum with con-
text length of two frames (previous two and next two frames). For
the proposed method and single DNN schemes, the error metric used
is ‘mean square logarithmic error’(msle) [23], while for SPP based
approach the error metric used is ‘mean square error’ (mse) (as pro-
posed in [18]).

3.4. Evaluation metrics

We evaluate the different schemes using PESQ, seg SNR and
STOI. PESQ is a measure of perceptual quality of speech, while
STOI measures the intelligibility. seg SNR provides information
about average reconstruction error across frames with respect to the

clean speech. Hence, these measures are used to objectively evaluate
the enhanced speech.

Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 1.7517 2.1166 2.4715 2.8141
M-DNNC4 2.1358 2.4331 2.6627 2.8455
S-DNN1 2.2209 2.4677 2.6603 2.7986
S-DNN2 2.1915 2.4685 2.6712 2.8061

M-DNN-1P2 2.2051 2.4714 2.6721 2.8074
M-DNN-2P2 2.2321 2.5137 2.7479 2.9323
M-DNNP4 2.2709 2.5582 2.7959 2.9886

Table 1: Average PESQ results for seen noise cases

Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 -3.1789 -0.7345 1.8513 4.2052
M-DNNC4 0.0056 1.7270 3.4493 5.0656
S-DNN1 0.4401 2.0055 3.6300 5.1630
S-DNN2 0.4247 2.0246 3.6016 5.0035

M-DNN-1P2 0.4650 2.0495 3.6533 5.1094
M-DNN-2P2 0.3887 1.9920 3.7289 5.4650
M-DNNP4 0.5695 2.2634 4.0867 5.8773

Table 2: Average seg SNR results for seen noise cases

Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 0.6135 0.7347 0.8301 0.8920
M-DNNC4 0.7222 0.8042 0.8616 0.8998
S-DNN1 0.7381 0.8114 0.8627 0.8962
S-DNN2 0.7374 0.8103 0.8603 0.8925

M-DNN-1P2 0.7348 0.8092 0.8608 0.8939
M-DNN-2P2 0.7395 0.8176 0.8725 0.9089
M-DNNP4 0.7441 0.8224 0.8777 0.9144

Table 3: Average STOI results for seen noise cases

Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 1.6939 2.0347 2.3849 2.7391
M-DNNC4 1.7530 2.0718 2.3814 2.6730
S-DNN1 1.7285 2.0468 2.3504 2.6198
S-DNN2 1.7348 2.0642 2.3719 2.6348

M-DNN-1P2 1.7540 2.0773 2.3860 2.6486
M-DNN-2P2 1.7324 2.0854 2.4128 2.7230
M-DNNP4 1.6005 2.0334 2.4002 2.7324

Table 4: Average PESQ results for unseen noise cases

4. RESULTS AND DISCUSSION

The average values of seg SNR, PESQ and STOI for seen noise
cases are presented in Tables (1 - 3). Similarly the average results for
unseen noise cases are given in Tables (4 - 6). We observe that the
proposed method outperforms the baseline schemes in most cases.
In few cases viz for unseen noises in low SNR conditions, using
multiple DNN with direct clean spectrum estimation doesn’t yield
better results compared to the single DNN schemes. This may be
due to the fact that, at low SNRs (for unseen case), the structure
in the spectrum is less distinguishable across different clusters learnt
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Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 -3.8267 -1.5364 1.1804 3.7280
M-DNNC4 -2.8976 -0.4222 2.0844 4.3052
S-DNN1 -3.2850 -0.7160 1.9376 4.3077
S-DNN2 -3.0418 -0.3964 2.1724 4.3191

M-DNN-1P2 -3.0239 -0.3905 2.2362 4.4494
M-DNN-2P2 -3.0849 -0.4768 2.2413 4.7173
M-DNNP4 -3.5594 -0.6332 2.2509 4.8757

Table 5: Average seg SNR results for unseen noise cases

Enhancement
Scheme

i/p SNR
-5 dB 0 dB 5 dB 10 dB

M-DNNS4 0.5756 0.7087 0.8180 0.8885
M-DNNC4 0.5851 0.7224 0.8272 0.8921
S-DNN1 0.5696 0.7117 0.8192 0.8849
S-DNN2 0.5775 0.7195 0.8225 0.8830

M-DNN-1P2 0.5832 0.7237 0.8263 0.8858
M-DNN-2P2 0.5746 0.7201 0.8302 0.8976
M-DNNP4 0.5294 0.7092 0.8296 0.9002

Table 6: Average STOI results for unseen noise cases

Enhancement
Scheme

noise type (seen or unseen)
seen unseen

M-DNNS4 2.2885 2.2131
M-DNNC4 2.5193 2.2198
S-DNN1 2.5369 2.1864
S-DNN2 2.5343 2.2014

M-DNN-1P2 2.5390 2.2165
M-DNN-2P2 2.6065 2.2384
M-DNNP4 2.6534 2.1916

Table 7: PESQ results averaged over SNRs and noises

after training the multiple DNN network due to high amount of noise
(which itself is unseen).

4.1. Dependency on the type of target output

From the results provided in Tables (1-6), we note that the pro-
posed schemes (M-DNN-1P2, M-DNN-2P2 and M-DNNP4) per-
form better than SPP based ones (M-DNNS4). This suggests that di-
rect estimation of clean speech spectrum using multiple DNN is bet-
ter than estimating SPP using similar network. It could be due to the
fact that the approximation for log of sum of two spectra (logS =
log(S1+S2)) used in SPP based method [16] i.e., log(S1+S2) '
max(log(S1), log(S2)) does not hold well at low SNRs, unlike that
at high SNRs. In addition, the clean speech is estimated using the
eq. (4). As we notice, the clean speech estimation depends on an at-
tenuation constant β [16] unlike any such in the proposed approach.
The value of this constant is kept fixed while its optimal value may
vary with the SNR.

4.2. Dependency on the objective function

From the comparisons presented in Tables (1-6), we notice that
M-DNNP4 performs better than M-DNNC4 in most of the cases ex-
cept at -5 dB SNR for unseen noise cases. Although the objective
function in eq. (3) enables competitive learning of the individual
DNN, the overall performance in terms of reconstruction error of
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Fig. 2: Comparison of individual DNN performances in the M-
DNNP4 system. DNNk corresponds to the kth DNN in the M-
DNNP4 system. seg SNR values are averaged over training noise
cases. The DNN4 contributes prominently to the overall seg SNR.

clean speech spectrum is not better than the network trained with the
objective function in eq. (2). We also note that the weighted average
of outputs from different DNNs behaves in a way identical to that of
residual networks [25]. We observe that, only one DNN contributes
to the overall output prominently. The other DNNs model the resid-
ual error. This is illustrated in Fig 2 in terms of seg SNR measure
averaged across 250 test sentences for all seen noise and SNR combi-
nations (a total of 250*4*4 sentences) with standard deviation shown
in red errorbar. We illustrate with the seg SNR measure since it cor-
relates well (compared to PESQ) with the reconstruction error. Sta-
tistical tests show that the average seg SNR using individual DNNs
are significantly different. The DNNs in the M-DNNP4 system con-
tribute to the final output in the following order: DNN4 > DNN3 >
DNN1 > DNN2 except at the i/p SNR of -5 dB. This indicates the
similarity of the multiple DNN system with the residual network.

4.3. Dependency on the number of DNNs

We observe a trade off between the performances for seen noise
cases and for unseen noise cases with respect to the number of DNNs
used. As we increase the number of DNNs, the performance in seen
noise cases at high SNRs improves at the cost of the deterioration at
the remaining cases.

In order to obtain an overall performance comparison among
different schemes, the PESQ values are averaged over all SNRs sep-
arately for seen and unseen noise cases. Table 7 shows the average
PESQ values. It is clear that the proposed multiple DNN network
with clean spectrum as the output representation performs better than
all other schemes for both seen and unseen noise cases. This demon-
strates the benefit of the proposed multiple DNN based speech en-
hancement scheme.

5. CONCLUSION

In this work, we propose to use speech spectrum as the out-
put representation in a multiple DNN based speech enhancement
scheme. In order to show the benefit of the proposed scheme, we
compare different schemes, by varying objective functions, and tar-
get outputs. We observe that, weighted average of outputs from dif-
ferent DNN, with target output set as clean speech spectrum, gives
better performance compared to other schemes for both seen and un-
seen noises considered in this work. In future work, we plan to put
more structure on the weights used to compute the output. Optimiza-
tion of architecture of each DNN could also provide room for further
improvement.
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