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ABSTRACT

Data augmentation is an effective method to increase the size of
training data and reduce the mismatch between training and test-
ing for noise robust speech recognition. Different from the tradi-
tional approaches by directly adding noise to the original waveform,
in this work we utilize generative adversarial networks (GAN) for
data generation to improve speech recognition under noise condi-
tions. With this method, the generated speech samples are based
on spectrum feature level and produced frame by frame without de-
pendence among them, and the augmented data has no true labels.
Then to effectively use these untranscribed augmented data, an un-
supervised learning framework is designed for acoustic modeling.
The proposed GAN-based data augmentation approach is evaluated
on Aurora4. The experimental results show that a relative ∼7.0%
WER reduction can be obtained by the proposed approach upon an
advanced acoustic model.

Index Terms— robust speech recognition, very deep convolu-
tional neural network, data augmentation, generative adversarial net-
works, unsupervised learning

1. INTRODUCTION

In recent years we have witnessed significant progress in automatic
speech recognition (ASR) due to the introduction of deep learning
[1, 2, 3]. Many previous studies applied deep neural network (DNN)
based models for acoustic modeling. They showed promising perfor-
mance and reduced the word error rate (WER) a lot when compared
with the conventional GMM model. Nevertheless, these systems still
do not work well when processing speech in noisy environments,
such as scenarios with additive noise, channel distortion and rever-
beration [4, 5, 6, 7].

The main problem for noisy speech recognition is the mismatch
between the training and testing, due to that the number of noise
types in real scenarios are so large that it is impractical to collect
enough data to cover all conditions for real applications. Thus in
order to improve the robustness of ASR systems, data augmentation
is commonly utilized to enlarge the noisy training data and reduce
the mismatch in applications. For example several recent studies
tried to increase the quantity of training data for far-filed speech
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recognition [8, 9]. The basic idea in these two works is generat-
ing extra data via directly adding the simulated noises to the original
speech waveform. They can obtain significant improvements on the
related test set. However, there are also several limitations in this ap-
proach: the quantity of the generated data size is also dependent on
the simulated noise types; directly adding additive or convolutional
noise to waveform artificially may cause another internal representa-
tions mismatch between the feature levels of generated and real data.
Thus, the new data augmentation method is demanded.

Generative adversarial networks (GAN) have attracted a lot of
interests in computer vision communities [10, 11, 12]. It can learn
generative models via adversarial training, which produces samples
from the real data distribution. Based on the basic GAN, the work in
[13, 14] proposed Wasserstein GAN (WGAN) to further improve the
loss function and training method, which can achieve a better perfor-
mance. In speech processing, GAN has been preliminarily applied
in some tasks, such as speech synthesis [15, 16], voice conversion
[17, 18], speech enhancement [19], spoken language identification
[20] and even acoustic scene classification [21]. However there is
still limited work for speech recognition.

In this work, we propose a new data augmentation strategy by
utilizing generative adversarial networks to improve the noise robust
speech recognition. The basic acoustic model we use is an advanced
very deep convolutional neural network (VDCNN) [22]. Based on
the input feature map of VDCNN, we use GAN to generate extra
feature maps to enlarge the noisy training data. Furthermore, an
unsupervised learning framework is developed to use the unlabeled
augmented data in an effective mode for acoustic modeling, which
can finally improve the system performance. The experiments on
Aurora4 show that the system performance can be improved signifi-
cantly by the proposed GAN-based data augmentation strategy.

The rest of this paper is organized as follows. Section 2 briefly
introduces the basic generative adversarial networks and Wasserstein
generative adversarial networks. The new proposed GAN-based data
augmentation approach is described in Section 3. An unsupervised
learning with the unlabeled generated data is presented in Section 4.
Section 5 shows the experimental results and analysis, and Section 6
gives the conclusions.

2. GENERATIVE ADVERSARIAL NETWORK

Generative adversarial network (GAN) was firstly introduced by
Goodfellow et al. in [10] as a powerful generative model for a wide
range of applications. The basic idea of GAN is to set up a game
between two players, i.e. a generator G and a discriminator D.
The discriminator performs classification between the real samples
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and fake samples. The generator produces samples from a data
distribution, which is usually a low dimensional random noise. The
produced samples are then passed into the discriminator to deter-
mine their similarity with the real data. The generator is optimized
to fool the discriminator while the discriminator is trained to distin-
guish the fake data from the real data. More specifically, the game
between the generator G and the discriminator D is formulated as a
two-player minimax game with the following cross entropy:

min
G

max
D

Ex∼Pr [log(D(x))] +Ez∼Pg [log(1−D(G(z)))] (1)

where Pr is the real data distribution, and Pg is the generated data
distribution. D(x) represents the probability that x comes from the
real data. z is the noise variable as the input to G.

More recently, researchers find that the traditional loss function
shown above is potentially not continuous and thus cannot provide
a usable gradient for the generator [13, 14]. Thus, they proposed
Wasserstein distance to measure the difference between these two
distributions, and D and G are trained by the following expression:

min
G

max
D∈L

Ex∼Pr [D(x)]−Ez∼Pg [D(G(z))] (2)

where L is the set of 1-Lipschitz functions introduced by WGAN to
restrict the discriminator. The Wasserstein distance has the desirable
property of being continuous and differentiable almost everywhere
under mild assumptions. Thus, WGAN is a more stable framework
to be applied in many scenarios.

3. GAN FOR DATA AUGMENTAION

As described above, most of the previous data augmentation work
adds various types of noise to the waveform directly, which has some
drawbacks. Some methods start to use generative models for data
generation [23, 21], but they are based on the original waveform
level or generate samples on the whole sequence with related labels.

This work utilizes the GAN model for data augmentation. The
basic unit we choose to generate data is the feature map on speech
spectrum. Thus it is performed on the speech feature level, such as
FBANK, to generate samples frame by frame. Given a K-dimension
FBANK feature, the context expansion is applied with N frames on
each side, so we can get a (2N + 1) × K-dimension feature map
in the time-frequency domain, which is finally used as the real data
input for the discriminator. In our experiments, we set K = 64 and
N = 8, so 17×64 feature map is formed. The output of GAN is also
the feature map of the same size, which will be utilized for acoustic
modeling in ASR. It is noted that due to the randomness of the noise
input for the generator and our frame-level data generation strategy,
the labels are unknown for the generated samples (feature maps),
and all the generated samples are independent from each other.

According to previous work on GAN, the structure configura-
tion and training setting of GAN are very important for the model
optimization. The configuration of our GAN structure is illustrated
in Figure 1. For the discriminator, there are three convolutional lay-
ers, followed with two fully connected layers to classify the real and
fake data. For the generator, similar to the discriminator, there are
two fully connected layers to transfer the input random noise, and
then the generator uses three transposed convolutional layers to gen-
erate the feature maps. After each convolutional, transposed convo-
lutional and fully connected layer, batch normalization is adopted.
The Leaky ReLU is applied in both discriminator and generator. The

noise input for the generator is randomly sampled from a Gauss dis-
tribution. As described in Section 2, we use the WGAN training
framework in this work to get the more stable training process.
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Fig. 1. The architecture of the proposed generator and dis-
criminator in the GAN-based data augmentation for ASR.
Conv means convolutional layer, ConvTrans means trans-
posed convolutional layer, FC means fully connected layer,
and BN means batch normalization. The model configura-
tion, such as [4 × 4, 64] indicates that the layer uses a 4 × 4
filter and the output contains 64 feature maps.

4. UNSUPERVISED LEARNING BY AUGMENTED DATA

Considering that each output feature map of GAN is generated from
a random noise vector, it is hard for us to get the true label for the
generated feature map. Thus an unsupervised learning strategy is
developed to utilize these augmented data. Assuming that the dis-
tributions between the original data and generated data are similar
from the well-trained GAN model, the augmented data from GAN
can be firstly processed by the original acoustic model to collect the
soft labels (the corresponding posterior probabilities). Once the soft
label of each feature map is obtained, the original data can be pooled
with the new generated data to train a new acoustic model. More
specifically, the whole training procedure is shown in Algorithm 1.

The Kullback–Leibler (KL) divergence between the acoustic
model output distribution and the related labels is used as the train-
ing criteria. In our experiments, minimizing the KL divergence is
equivalent to maximizing the following expression:

J =
∑

ot∈Dgen

∑
s

pA(s|ot) log pB(s|ot)

+
∑

ot∈Dorig

∑
s

pref log pB(s|ot) (3)

where ot is the input feature and and s is the acoustic state. Dorig

and Dgen are the original dataset and generated dataset respectively.
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Algorithm 1 Unsupervised learning with augmented data
1: Use the original data Dorig to train an original acoustic

model A for ASR and GAN model N for data augmenta-
tion.

2: Use GAN model N to generate extra dataset Dgen.
3: Use the original acoustic model A to get the soft label for

each augmented feature map frame by frame.
4: Pool the original dataset Dorig with hard labels and

augmented dataset Dgen with soft labels to train a new
acoustic model B.

pref is the reference alignment for the original transcribed data,
which is the hard label. The posterior distributions of the acous-
tic model A and B are denoted as pA(y|ot) and pB(y|ot), where
pA(y|ot) is the soft label, i.e. the posterior generated by the orig-
inal acoustic model A. This approach allows us to utilize the large
quantity of untranscribed augmented data more effectively. The ar-
chitecture is illustrated in Figure 2.

Generated
Data

Original
Data

GNoise

< GAN >

D

Acoustic

Model A
Acoustic

Model B

KL Divergence

Soft Label Hard Label

Output Output

Fig. 2. The proposed unsupervised learning architecture with
GAN-based data augmentation for acoustic modeling.

5. EXPERIMENTS

5.1. Experimental Setup

The proposed approach is evaluated and compared on the standard
Aurora4 task, which has multiple additive noise conditions as well
as channel mismatch. The Aurora4 task is a medium vocabulary
speech recognition task based on the Wall Street Journal (WSJ0) cor-
pus [24]. It contains 16 kHz speech data in the presence of additive
noises and linear convolutional channel distortions, which are intro-
duced synthetically to clean speech from WSJ0. The multi-condition
training set with 7138 utterances from 83 speakers includes a com-
bination of clean speech and speech corrupted by one of six different

noises at 10-20 dB SNR. Half data is from the primary Sennheiser
microphone and the other is from the secondary microphones. As
for the training data, the test data is generated using the same types
of noise and microphones. Test data can be grouped into 4 subsets:
clean, noisy, clean with channel distortion, and noisy with channel
distortion, which will be referred to as A, B, C, and D, respectively.

Gaussian mixture model based hidden Markov models (GMM-
HMMs) are first built with Kaldi [25] using the standard recipe, con-
sisting of 3K clustered states trained using maximum likelihood es-
timation with the standard Kaldi MFCC-LDA-MLLT-FMLLR fea-
tures. After the GMM-HMM training, a forced-alignment is per-
formed to get the state level labels. All the neural networks based
acoustic models for speech recognition are built using CNTK [26] in
this work. They were trained using cross entropy (CE) criterion with
stochastic gradient descent (SGD) based back propagation (BP) al-
gorithm. The task-standard WSJ0 bigram with 5K-word dictionary
is used for decoding, and the standard testing pipelines in the Kaldi
recipes are used for decoding and scoring. Our previous proposed
very deep convolutional neural network (VDCNN) is used as the
acoustic model for all setups in this work [22], which consists of
ten convolutional layers and four fully connected layers. More de-
tails about the VDCNN model and experimental setup on acoustic
modeling can be referred from [22].

All the GAN models for data augmentation used here are im-
plemented with PyTorch [27]. The networks are trained using RM-
SProp, and the mini-batch size is set to 64. Batch normalization is
used after the convolutional or transposed convolutional layers. We
use Leaky ReLU in both discriminator and generator, and the neg-
ative slope is 0.2. The learning rate is set to 0.00005 in the model
optimization for both discriminator and generator. During the train-
ing process, for each mini-batch data, the discriminator D is updated
5 times then followed one time update on the generator G, and the
maximum training epoch is set to 20 for the model optimization.

5.2. Evaluation on Aurora4

In our experiments, VDCNN acoustic model based baseline is firstly
built, which has shown great noise robustness in ASR [22], and the
results are shown in the first line of Table 11.

For data augmentation using GAN, total 60-hour speech data
is newly generated, and then the generated data is pooled with the
original Aurora4 data to build the acoustic model. The results are
shown as the second line of Table 1. It is observed that the GAN-
based data augmentation can still obtain a significant improvement
upon the strong acoustic model VDCNN. There is a relative ∼6.0%
WER reduction compared to the system only using the original noisy
training data. Another interesting finding is that although no noise
type is appointed at the generation stage, most of the gain is from
the subset D with both additive noise and channel distortion. This
observation further demonstrates the effectiveness of the proposed
GAN-based data augmentation for noise robust speech recognition.

For the better comparison, we also perform the data generation
using the normal mode: directly adding all types of noise on the
original clean speech waveform manually. For Aurora4, we also
use the six noise types from the corpus to generate 60-hour noisy
speech data for acoustic modeling. In addition, we further pool all
the augmented data from these two different approaches, i.e. using

1This performance is slightly worse than our previous number in [22]
(9.02 vs. 8.81), since the different CNTK versions are used here.
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120-hour generated data, for acoustic modeling. The related results
are shown as the last two lines of Table 1. We see that the tradi-
tional data augmentation with a manual mode can indeed get a gain,
but it is obviously smaller than that from the GAN-based approach.
Moreover, the manual mode is more easier to obtain the biased per-
formance on some conditions and gets degradations on the others. In
addition, the generated data from different methods seems have their
own properties. Combining the generated data from two strategies
achieves another additional improvement.

Table 1. WER (%) comparison of different training data.
Manual means directly adding noise to the original speech
waveform manually, and GAN means the new proposed GAN-
based data augmentation

Data A B C D AVG
original 3.62 5.81 5.12 13.77 9.02
+GAN 3.34 5.70 4.93 12.79 8.51
+Manual 4.04 6.37 6.35 12.52 8.84
+GAN & Manual 3.10 5.52 4.95 12.65 8.37

Then different augmented data sizes from the same GAN model
are compared, and the results are illustrated in Table 2. It is observed
that increasing the augmented data size from GAN indeed can grad-
ually improve the system, but the performance difference is not very
large. The performance of system using 15hr augmented data even
can approaches that using 90hr augmented data (less than absolute
0.1% difference on averaged WER on Aurora4). This demonstrates
the efficiency and effectiveness of using GAN to do the data genera-
tion.

Table 2. WER (%) comparison of different training data sizes
generated by GAN.

Data size A B C D AVG
original 3.62 5.81 5.12 13.77 9.02

15h 3.31 5.53 4.93 13.04 8.55
30h 3.36 5.60 4.99 12.91 8.53
60h 3.34 5.70 4.93 12.79 8.51
90h 3.36 5.68 5.01 12.68 8.47

5.3. Visualization and analysis on generated feature maps

In order to better understand generated training samples from the
GAN model, the produced feature map examples (17× 64) are plot-
ted and illustrated in Figure 3. It shows the comparison of differ-
ent feature maps generated by the GAN model on different training
stages. Four random noise vectors are used for data generation and
each row corresponds the feature maps generated from the same ran-
dom noise vector input but on different training epochs. For the bet-
ter comparison between the generated data and real speech, several
real feature maps from the original noisy corpus are also illustrated
in the right part of Figure 3.

The illustration shows that all the generated feature maps indeed
look like the real speech spectrum very much. With the training pro-
cess proceeds, the speech patterns can be observed more obviously,
which means that the quality of the generated data is gradually im-
proved with more training epochs. Doing the comparison within the
samples from different noise inputs for generator, the randomness
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5
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20

Generated from GAN Real

Noise
1

Noise
2

Noise
3

Noise
4

Fig. 3. Generated feature maps from GAN model on different
training epochs. Four random noise inputs are used for GAN
to generate four examples. Each row corresponds the feature
maps generated from the same noise input but on different
training epochs. The right part is the selected real feature
maps from the original real noisy data.

and difference is obvious significant. This property of GAN-based
data augmentation can enable us to produce noisy data with more
random patterns for robust speech recognition.

6. CONCLUSION AND FUTURE WORK
In this paper we propose a new framework on data augmentation
for noise robust speech recognition. Different from most conven-
tional approaches by directly adding noise to the original waveform,
the generative adversarial network is utilized. The augmented data
from GAN is based on spectrum feature level and generated frame
by frame (one frame corresponds one feature map). There is no de-
pendence among the generated samples, even no true labels existing
for them. Then an unsupervised learning strategy is designed to uti-
lize these untranscribed augmented data in an effective mode. The
proposed framework is evaluated on Aurora4 and shows more than
a relatively ∼7.0% WER reduction on this noisy ASR task.

This work is the first attempt to explore GAN on data augmen-
tation for speech recognition. In our future work, we will extend and
evaluate the proposed method on other noisy scenarios, such as the
far-field scenario with reverberation.
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“Wasserstein GAN,” CoRR, vol. abs/1701.07875, 2017.

[15] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and
K. Kashino, “Generative adversarial network-based postfilter
for statistical parametric speech synthesis,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
ICASSP, 2017, pp. 4910–4914.

[16] Yuki Saito, Shinnosuke Takamichi, and Hiroshi Saruwatari,
“Statistical parametric speech synthesis incorporating genera-
tive adversarial networks,” TASLP, 2017.

[17] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and
Hsin-Min Wang, “Voice conversion from unaligned corpora
using variational autoencoding wasserstein generative adver-
sarial networks,” CoRR, vol. abs/1704.00849, 2017.

[18] Takuhiro Kaneko, Hirokazu Kameoka, Nobukatsu Hojo,
Yusuke Ijima, Kaoru Hiramatsu, and Kunio Kashino, “Gen-
erative adversarial network-based postfilter for statistical para-
metric speech synthesis,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP, 2017,
pp. 4910–4914.

[19] Santiago Pascual, Antonio Bonafonte, and Joan Serrà,
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