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ABSTRACT

The success of time-frequency (T-F) mask-based approaches
is dependent on the accuracy of predicted mask given the
noisy spectral features. The state-of-the-art methods in T-F
masking-based enhancement employ Deep Neural Network
(DNN) to predict mask. Recently, Generative Adversarial
Networks (GAN) are gaining popularity instead of maximum
likelihood (ML)-based optimization of deep learning archi-
tectures. In this paper, we propose to exploit GAN in T-
F masking-based enhancement framework. We present the
viable strategy to use GAN in such application by modify-
ing the existing approach. To achieve this, we use a method
that learns the mask implicitly while predicting the clean T-
F representation. Moreover, we show the failure of vanilla
GAN in predicting the accurate mask and propose a regular-
ized objective function with the use of Mean Square Error
(MSE) between predicted and target spectrum to overcome
it. The objective evaluation of the proposed method shows
the improvement in the accurate mask prediction, as against
the state-of-the-art ML-based optimization techniques. The
proposed system significantly improves over a recent GAN-
based speech enhancement system in improving speech qual-
ity, while maintaining a better trade-off between less speech
distortion and more effective removal of background interfer-
ences present in the noisy mixture.

Index Terms— Task-dependent masking, speech en-
hancement, generative adversarial networks

1. INTRODUCTION

The objective of speech enhancement is to improve the speech
intelligibility and quality given the noisy mixture [1]. Speech
enhancement is essential in many applications to generate the
robust speech-specific features and/or the enhanced speech
waveform. Such robust features find their applications in
speech recognition and speaker identification task [2]. The
enhanced speech can be used in hearing aid devices and
cochlear implant (CI) designs [3].

This work was supported in part by MeitY, Govt. of India, through a
consortium projects ASR Phase-II, and in part by the authorities of DA-IICT,
Gandhinagar, India.

Time-Frequency (T-F) masking-based approaches em-
ploying supervised learning are state-of-the-art techniques
in the enhancement and source separation problems [4–8].
The aim of supervised learning is to predict the accurate T-F
mask given the noisy mixture. In such approaches, a Deep
Neural Network (DNN) is often used to predict the T-F mask
using the features extracted from the noisy mixture [5–10].
Currently, all such approaches use Maximum Likelihood
(ML)-based optimization criteria to predict the T-F mask or
clean T-F representation while predicting the mask implic-
itly. ML-based optimization criteria puts prior assumptions
on data distribution (such as, Minimum Mean Square Er-
ror (MMSE) objective function assumes the output variables
to be Gaussian) which may not be valid for the given data.
Often such assumptions prevent the network to learn percep-
tually optimal network parameters for various several speech
technology applications. For T-F masking-based approaches,
the difference between the performance of the oracle mask
and the predicted mask indicates the need of better objective
function to perceptually optimize the network parameters [2].
Generative Adversarial Networks (GAN) provides one such
alternative of ML-based optimization criteria [11]. In this
paper, we propose to exploit GAN for T-F masking-based
speech enhancement task. We have shown that the objective
function of vanilla GAN (v-GAN) is not sufficient to predict
the T-F mask accurately and we have modified the objective
function to address this limitation. Moreover, the proposed
GAN-based speech enhancement framework is generalizable
to any T-F representation.

1.1. Recent Work

GAN is a deep learning (DL) architecture [11], which is a
well-established generative modeling technique in the field
of computer vision [12–14]. Recently, the use of GAN is
gaining popularity in speech technology applications that re-
quire accurate reconstruction of speech. The use of GAN
has shown improvements over ML-based techniques in voice
conversion (VC) [15, 16] and speech enhancement (SE) task
[17, 18]. The conditional GAN (cGANs) architecture pro-
posed in [17], uses a Pixel-to-Pixel (Pix2Pix) framework for
SE task, by learning the mapping function between the noisy
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speech and clean speech spectrogram. A GAN-based post-
filter for Short-Time Fourier Transform (STFT) spectrograms
proposed in [19] reconstructs the spectrogram that preserves
the finer structures and resembles the true data, even in the
high-dimensional STFT-domain. In addition, a speech en-
hancement GAN (SEGAN) [18] have shown a promising re-
sult for end-to-end speech enhancement task in an adversar-
ial framework. These approaches directly predicts the spec-
trum [17] or raw samples [18] of the clean speech. Such ap-
proach may not be suitable for applications, such as source
separation, where T-F masking-based methods are proven to
be a better approach. In this paper, we present a viable frame-
work to exploit GAN in T-F masking-based enhancement.

2. PROPOSED FRAMEWORK FOR T-F
MASKING-BASED ENHANCEMENT

2.1. Generative Adversarial Networks (GANs)

The aim of the generative model is to produce the samples
that resemble the samples generated from the data distribu-
tion X . GAN is a generative model that learns the mapping
between the samples y from some prior distribution Y to sam-
ples x belonging to X . The G network is responsible for
learning the mapping function in an adversarial framework
along with a D network. Typically, a D network is a binary
classifier with input as real samples coming from X and the
fake samples generated by G. The adversarial characteristics
of the GAN forces the D network to maximize the likelihood
of the samples coming from X as real, whereas minimizing
the likelihood of the samples coming from the model distri-
bution X̂ (output of G) as fake. As training proceeds, the G
network adjust its parameters by generating realistic samples
at its output, as a result the generated samples closely follows
X , leaving the D network unable to differentiate between the
true and fake distributions. This objective function can be
formulated as [11]:

min
D

V (D) = −Ex∼X [logD(x)] −

Ey∼Y [1− log(D(G(y)))],
(1)

min
G

V (G) = −Ey∼Y [logD(G(y))], (2)

where Ex∼X denotes the expectation over all the samples x
coming from the distribution X .

3. T-F MASKING USING GAN

GAN can be used in T-F masking-based approaches, where
the objective of the G network is to generate T-F mask or
clean T-F representation and the objective of the D network
is to differentiate between the actual T-F mask or clean T-
F representation and the one generated by G. We employ a
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Fig. 1. GAN fails to properly predict the mask (a) clean T-
F representation: the solid-circle region shows the silence
frame, (b) enhanced T-F representation: the dotted-circle
shows the predicted frame where GAN fails, (c) noisy T-F
representation, and (d) predicted mask.

method in which G is trained to directly predict the clean rep-
resentation while learning the mask-like representation im-
plicitly [9]. Such method referred to as task-dependent mask-
ing, has shown to give better performance than the directly
predicting T-F mask using the DNN [9]. Moreover, the re-
cent studies in GAN have shown that the D network can ac-
curately learn to discriminate between the clean and noisy
spectrum [19]. This method generalizes well to the differ-
ent feature space, such as filterbank energies used in speech
recognition, Short-Time Fourier Transform (STFT) spectrum,
and Gammatone spectrum.

Inspired by [9], we propose to optimize error between the
log T-F representation of clean and enhanced speech, while
learning the mask-like representation at the output layer of
the network. If the output of the last layer of the network
is m, then the objective function for the network parameter
optimization can be written as:

x = log(c),

t = log(h ◦m),

J =
1

2
||t− x||2,

(3)

where c is the clean T-F representation, h is noisy T-F repre-
sentation, ◦ denotes the elementwise multiplication, and J is
the objective function to train the network parameters. Using
this objective function, the gradient equations for backprop-
agation algorithm can be easily written. Hence, the network
will learn a T-F mask which, if multiplied with the noisy T-F
representation, will produce clean T-F representation. If m
is constrained to have values between 0 to 1, the T-F mask
learned by the network should resemble (but not exactly) to
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the Ideal Ratio Mask (IRM) [9].
The GAN can be easily employed in such framework.

Here, the objective of the G network is to learn the accurate
clean T-F representation while learning the mask implicitly.
The D network is trained to differentiate between the clean
T-F representation and output generated by G. The initial ex-
periments using vanilla GAN suggests that this framework,
while viable intuitively, fails to learn the T-F mask accurately.
Fig. 1 shows one instance of such failure. The dotted circle
in Fig. 1 (b) shows the area where GAN is not able to pre-
dict the mask accurately. However, the enhanced T-F repre-
sentation (Gammatone spectrum) of the region resembles the
region of the clean T-F representation in Fig. 1 (a) showed by
the solid circle. The output of G is not accurate for the given
frame, while it still belongs to the distribution of clean T-F
representation (X ). Hence, the D is not able to differentiate it
as fake representation and learning fails. The cost of D is also
observed to be low at such instances.

One possible solution to prevent this is to regularize
the objective function. The G network is able to fool D by
generating enhanced T-F representation belonging to some
other frame, which still resembles the clean T-F distribution.
Hence, we use the MMSE error between the predicted and the
clean T-F representation in addition to vanilla GAN objective
function of G. The modified objective function can be written
as:

min
G

V (G) = −Ey∼Y [log(D(G(y)))]+

1

2
Ex∼X ,y∼Y [log(x)− log(G(y))]2.

(4)

The similar objective function is used in [17] and [18]. They
have used the L1 norm between network output and the target
to regularize the training. However, they have not justified the
need of such regularization in the context of speech applica-
tions. We use the MMSE error since we are comparing our
results with the network trained with the MMSE criteria.

4. EXPERIMENTAL SETUP

4.1. Database

The proposed algorithm was evaluated on the dataset released
by Valentini et. al. [20]. The training and testing set have
mismatched condition. The dataset comprises of 30 speak-
ers from the Voice Bank corpus [21]. The training set con-
tains 28 native English speakers with around 400 sentences
for the clean and noisy set, sampled at 48 kHz. The test set
contains 2 native English speakers with around 400 sentences
for the clean and noisy set. The total of 40 different noisy
conditions with 10 types of noise (2 artificial and 8 from De-
mand database [22]) and 4 signal-to-noise ratio (SNR) each
(15, 10, 5, and 0 dB) are considered for the noisy training set.
There are around 10 different sentences per training speaker
in each condition. To make the test set, a total of 20 different

noisy conditions with 5 types of noise (all from the Demand
database) and 4 SNR each (17.5, 12.5, 7.5, and 2.5 dB) are
considered. Training set contains 11,572 utterances, while
824 utterances are available in the test set.

4.2. Network architecture

We trained three networks to compare the results. The first
network is a DNN which is trained using the MMSE criteria
between enhanced and clean T-F spectrum. The second net-
work is vanilla GAN (v-GAN) and the third network being
GAN with MMSE regularization (MMSE-GAN). In v-GAN
and MMSE-GAN, the G network was identical to the DNN
network. DNN and G of both GAN and MMSE-GAN had
three hidden layers. Each layer had 512 units with Rectified
Linear Unit (ReLU) activation. The output layer had 64 units
to predict T-F mask implicitly. Sigmoid activation was used
to limit the output mask values between 0 to 1. The D net-
work of GAN and MMSE-GAN networks also had three hid-
den layers with 512 units in each layer. However, the units
has tanh activation function. The output layer had single unit
with sigmoid activation. All the three models were trained
for 30 epochs with Adam optimizer [24] and a learning rate
of 0.001, using a batch size of 1000.

To prepare the input-output pair to train the network,
Gammatone spectral features were extracted from the speech
signals. The original utterances of the database were down-
sampled from 48 kHz to 16 kHz. Pre-emphasis with the
factor 0.95 was performed. Then, 64-channel Gammatone
spectrum was computed with 20 ms Hamming window and
10 ms overlap between consecutive frames. The input to the
network was 7 frames (3 left and 3 right) context of log-
Gammatone spectrum. The networks were trained to predict
the clean log-Gammatone spectrum as T-F representation,
while learning the mask implicitly. Out of total 11572 train-
ing utterances, 11000 random utterances were used to train
the networks and remaining 572 utterances were taken as
validation set. Once the network is trained, the model with
the least MSE on validation dataset was chosen and testing
was performed.

4.3. Results

Fig. 2 shows the predicted masks for three different architec-
tures. The visual inspection shows that the mask predicted by
the MMSE-GAN is significantly better than the other two net-
works. Especially, the mask predicted by MMSE-GAN pre-
serves the finer structure in the predicted mask. To evaluate
the performance over the entire database, the quality of the
enhanced speech is computed using various objective mea-
sures. CSIG measured from 1 to 5, predicts the mean opin-
ion score (MOS) of the signal distortion, considering only to
the speech signal [25]. CBAK and CMOS measured from 1
to 5, predicts the extent of background interferences in the
speech and the overall effect, respectively [25]. Perceptual
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Fig. 2. (a) Oracle mask, Gammatone spectrum of (b) clean speech, (c) noisy speech. Predicted mask using (d) RMSE-DNN,
(e) GAN, (f) RMSE-GAN. Gammatone spectrum of reconstructed speech using (g) DNN, (h) GAN, (i) MMSE-GAN.

Table 1. Performance comparisons between the noisy signal, DNN, MMSE-GAN, GAN, SEGAN, and the Wiener filter-based
enhancement

Metric Noisy DNN v-GAN MMSE-GAN SEGAN [18] Wiener [23]
CSIG 3.35 3.73 2.48 3.80 3.48 3.23
CBAK 2.44 3.09 2.64 3.12 2.94 2.68
CMOS 2.63 3.09 1.91 3.14 2.8 2.67
PESQ 1.97 2.49 1.41 2.53 2.16 2.22
STOI 0.91 0.93 0.79 0.93 0.93 -

Evaluation of Speech Quality (PESQ) measured from (-0.5 to
4.5), stands for perceptual evaluation of speech quality is a
wideband version as recommended in ITU-T P.862.2 [26] to
assess the voice quality in the speech. All these metrics are
computed using the implementation shown in [1]. Moreover,
to show the improvement in speech intelligibility, we also
calculated Short-Time Objective Intelligibility (STOI) mea-
sure [27].

Table 1 shows the metric scores for the different architec-
tures. We compare the results of our approach with the exist-
ing speech enhancement algorithms, such as SEGAN [18] and
Weiner filter-based method [23]. The results for SEGAN and
Wiener filter-based methods are directly taken from the [18],
since the same database and evaluation metrics are used in
their work. The quality scores suggest that v-GAN is not
able to improve speech quality due to inaccurate prediction
of the mask. While MMSE-GAN gives significant perfor-
mance improvement over DNN, especially in improving sig-
nal and overall quality. It has to be noted that this improve-
ment is solely due to employing GAN in optimizing the net-
work parameters, since all the other conditions were simi-
lar while training the DNN and G. Moreover, the comparison
with SEGAN architecture suggest that T-F masking-based ap-
proaches are better for speech enhancement, at least in terms

of metrics for evaluating the objective quality. The STOI
scores suggest that the intelligibility of the speech signals us-
ing DNN, MMSE-GAN, and SEGAN is almost similar.

5. SUMMARY AND CONCLUSIONS

In this study, we proposed and analyzed a framework for T-
F mask estimation using a Generative Adversarial Networks
(GAN). In this study, a DNN-based GAN is employed for
mask estimation. We show that the vanilla GAN is insufficient
to learn the accurate spectral mapping, given the noisy T-F
representation. To that effect, we establish the need of MMSE
regularization in the GAN framework and have shown its vi-
ability. Results show that the proposed framework estimates
the mask more accurately than the DNN trained using MMSE
criteria. The objective measures also dictate the improvement
in the performance by using adversarial training. The pre-
sented framework can be improved in many ways. The use
of MSE error in the discriminator network instead of cross-
entropy is proven to be better. The L1 norm can be used to
regularize the cost function of generator. Convolutional Neu-
ral Network (CNN)-based networks can be used in the some
manner, since they are proven to perform better in GAN.
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