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ABSTRACT 

 

Speech blind bandwidth extension technologies have been 

available for some time, but until now have not seen 

widespread deployment, partly because the added bandwidth 

has been accompanied by added artifacts. In this paper, we 

present three generations of blind bandwidth extension 

technologies, from Vector Quantization mapping through 

Gaussian Mixture Models, to our latest architecture based on 

deep neural networks using Generative Adversarial 

Networks. This latest approach shows a sharp jump in 

quality, and demonstrates that machine-learning based blind 

bandwidth extension algorithms can achieve quality equal to 

wideband codecs, both objectively and subjectively. We 

believe that blind bandwidth extension can now achieve 

sufficiently high quality to warrant deployment in the existing 

telecommunication networks.  

 

Index Terms— blind bandwidth extension, artificial 

bandwidth extension, generative adversarial network, 

objective quality evaluation, subjective quality evaluation, 

POLQA 

 

1. INTRODUCTION 

 

Until a few years ago, the quality of voice 

telecommunications has been limited by design choices made 

over 100 years ago, which resulted in an 8 kHz sampling rate 

being used and in a practical frequency range of 

300 – 3400 Hz. This so-called narrowband (NB) frequency 

range severely limited speech quality. Recently, the industry 

has started to move to “HD voice” and “Ultra HD voice” — 

the use of wideband (WB) or super-wideband (SWB) coders, 

respectively, which use sampling rates of 16 kHz or 32 kHz 

and correspond to frequency ranges of 50 – 7000 Hz or 

50 – 14000 Hz, respectively [1] [2]. 

    However, WB and SWB deployments are not ubiquitous, 

as there can be substantial costs to develop, test, and deploy 

the supporting services. Further, end-to-end WB/SWB calls 

require upgraded devices at both ends.  It will likely take 

years before full coverage and complete handset penetration 

is achieved, and upgrading landline networks to WB/SWB is 

likely to take even longer. Until then, a significant proportion 

of calls will still use legacy narrowband. 

    Blind Bandwidth Extension (BBE) technology aims at 

solving this problem by transforming NB speech into WB or 

SWB speech. In this paper we will focus on the WB case only 

for simplicity.  

 

2. BACKGROUND 

 

2.1.  Related work 

Various statistical approaches to BBE have been proposed, to 

predict the 4-8 kHz portion of speech, usually referred to as 

the high-band (HB), from the 0-4 kHz portion, known as the 

low-band (LB). Typically, some form of either spectral 

folding or statistical modelling is used to generate a signal 

having the general characteristics of wideband speech [3] [4]. 

While perfect prediction cannot be expected, reasonably high 

quality speech can be obtained. 

    Vector Quantization (VQ) codebook mapping can be used 

to create discrete mapping of speech parameters from LB to 

HB [5][6]. Gaussian Mixture Models (GMM) based methods 

are used to preserve a more accurate transformation between 

LB and HB by modeling the speech envelope parameter 

continuously [7]. Hidden Markov Models (HMM) extend 

GMMs by exploiting speech temporal information [8]. 

Neural network based approaches such as deep neural 

networks have been proposed for BBE, as they are known to 

better model highly non-linear problems [9].  

 

2.2. Loss functions and GANs 

The statistical models discussed above are all based on the 

most basic loss function in regression problems – Mean 

Squared Error (MSE), which measures the difference in HB 

speech envelope parameters between prediction and ground 

truth.  The MSE loss function works well in the average 

sense, but struggles to handle the uncertainty inherent in 

recovering missing speech HB such as detailed spectral shape 

and voiced/unvoiced energy dynamics. Minimizing MSE 

encourages finding parameter-wise averages of plausible 

solutions which are typically overly-smooth and thus have 

poor perceptual quality. 

    GANs have been introduced in [10], and have been 

successfully used in image processing field, such as image-

to-image translation [11], image super resolution [12], and 

text-to-image synthesis [13]. The GAN training procedure 

encourages the reconstructions to move towards regions of 

the search space with high probability of containing realistic 

HB speech parameter distribution and thus close to the 

natural speech HB manifold [12]. In this paper we investigate 

how GANs may help for BBE.  
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3. BBE FRAMEWORK 

 

In general, BBE frameworks are based on the classic source 

filter speech production model. Using such a model, the 

wideband extension of the narrowband speech signal can be 

divided into two sub-tasks: 

- Estimation of the high-band spectral envelope 

- Extension of narrowband excitation signal 

    To synthesize the HB speech signal, we leveraged the HB 

model from the EVRC-WB [14]. Figure 1 shows the overall 

diagram of our BBE framework. 

 

Figure 1: BBE framework 

3.1. High-band Excitation 

The HB excitation is derived from the NB excitation through 

a non-linear function, which generates a high-band excitation 

preserving the harmonic structure of the signal [14]. 

 

3.2. High-Band Spectral Envelope 

In our speech HB extension model, for each 20 ms speech 

frame, 6th-order Line Spectral Frequencies (LSF) are used to 

spectrally shape the HB, together with a gain factor 

corresponding to the energy ratio between LB and HB [14]. 

 

3.3. Framework validation 

This BBE framework has been tested to verify that it provides 

quality no worse than AMR-WB 12.65 kbps, both objectively 

and subjectively, when HB parameters are extracted from the 

original WB speech. Since BBE usually does not reach AMR-

WB 12.65 kbps quality, the framework is not a performance 

bottleneck. This framework is also used in EVRC-WB, and 

the Qualcomm proprietary eAMR WB codec [16]. 

 

4. HB PARAMETER PREDICTION 

 

4.1. Speech parameters 

 

Input Output 

10th order low-band LSFs + 

Delta LSFs 

6th order high-band LSFs 

0-4 kHz speech energy 4-8 kHz speech energy 

Table 1: Predictor input and output parameters 

The parameters used in our HB prediction experiments are 

listed in Table 1. Backward deltas of the LB LSFs are used 

to improve the prediction without requiring extra delay. 

 
4.2. Statistical Modeling with minimizing MSE 
4.2.1. VQ Codebook Mapping 

The most basic approach for BBE is codebook mapping. LB 

and HB speech envelope parameters are extracted from 

wideband speech and are further used to train a VQ codebook 

using a clustering method such as k-means. During the 

estimation phase, the received narrowband parameters are 

compared to the LB envelope parameter entries in the 

codebook, and the entry closest to the received narrowband 

envelope parameters is then chosen. The HB envelope 

parameters corresponding to the selected entry are used as the 

HB spectral envelope parameters [5]. In practice, the N-

closest codebook entries are interpolated, weighted by the 

distance between their LB envelope parameters and the 

received narrowband envelope parameters [6].  

 

4.2.2. Gaussian Mixture Models (GMM) 

Compared to codebook mapping, GMM can model the 

speech envelope data continuously, which allows for soft 

clustering. Training is performed using Expectation 

Maximization (EM) and Maximum Likelihood Estimation 

(MLE) [7]. This probabilistic framework also has the 

flexibility to incorporate speech temporal information by 

introducing the state transition probability matrix during 

training, which converts the model to a GMM/HMM hybrid 

model. The main benefit from adding an HMM component is 

that it can implicitly exploit information from preceding 

speech frames to improve the estimation accuracy [8].  

Morphing techniques from LB parameters to HB parameters 

using mixture means and covariance matrices are discussed 

in detail in [7]. 

 

4.3. Statistical Modeling with GANs 

4.3.1. Generative Adversarial Networks framework 

 

 

Figure 2: BBE-GAN Framework 

A GAN [10] is comprised of a generator (G) and a 

discriminator (D), as shown in Figure 2. Here, for our BBE-

GAN system, G is a deep neural network which predicts the 
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HB parameters from the LB parameters. D is another deep 

neural network acting as a binary classifier, which tries to 

differentiate between predicted HB parameters and natural 

HB speech parameters.  

    During adversarial training, G tries to fool D by adapting 

its weights and biases so that D believes its output is natural. 

D and G are iteratively trained, each trying to defeat the other. 

This approach leads G to generate an output that follows the 

same distribution as the natural data, and therefore can lead 

to more natural sounding speech. 

 

4.3.2. Pre-training with MSE loss 

Deep Neural Networks have been previously applied to the 

BBE problem, using an MSE loss, e.g. in [9]. We use such a 

model as a starting point. Here, a four-layer DNN generator 

of HB LSFs and energy is pre-trained using the standard MSE 

loss. This pre-training stage is crucial so that the GAN 

training process starts with a good initial generator, which 

helps avoid instability issues. 

 

4.3.3. Perceptual loss function 

The definition of our perceptual loss function 𝑙 is critical for 

the performance of the generator network. Inspired by the 

perceptual loss function design in SRGAN [12], we 

combined the HB speech envelope parameter domain MSE 

𝑙𝑝𝑎𝑟𝑎𝑚𝑠  with the adversarial loss 𝑙𝑎𝑑𝑣  together and formulated 

the perceptual loss as their weighted sum, as per (1). 

 

𝑙 = 𝑙𝑝𝑎𝑟𝑎𝑚𝑠 + 10−2 ∗  𝑙𝑎𝑑𝑣         (1) 

 

5. EXPERIMENTS 

 

5.1. Setup 

We conducted our speech bandwidth extension experiments 

using the NTT 1994 multi-language corpus [17] as our 

training and validation data with a 10-fold cross validation 

scheme. The data is sampled at 16 kHz sampling rate and 

digitized into 16-bit resolution, and an ITU-T P.341-

compliant filter is applied to simulate a typical Tx handset 

response. We use ITU-T P.501 British English [18] as the 

evaluation dataset.  

    For BBE-VQ, we used separate 256-element VQ 

codebooks for HB LSFs and Gain. A weighted combination 

of the three closest candidates is used for the prediction. 

    For BBE-GMM, we used a GMM + HMM hybrid model 

with 64 states with 4 mixtures per state, and full covariance 

matrices. The forward path of the Viterbi decoding algorithm 

is used, i.e. no look-ahead delay is needed.  

    For BBE-GAN, both generator and discriminator are a 

four-layer feed-forward DNN (1 input layer, 1 output layer, 2 

hidden layers) with 1024 neurons per hidden layer. ADAM 

optimizer is used during training.  

    Figure 3 and 4 show the spectral envelope of a typical 

voiced segment and an unvoiced segment during the 

adversarial training process at iteration 0, 100 and 200. We 

can clearly see that moving away from MSE as the loss 

function, BBE-GAN output is moving towards the spectrum 

of the reference WB speech. The GAN training process is 

seen to improve the energy of unvoiced segments while 

cleaning up unwanted HB noise during voiced segments. This 

leads to a noticeable increase in speech quality, with less 

audible artifacts and higher naturalness. 

 

 

Figure 3: Voiced speech output vs GAN iterations 

 

Figure 4: Unvoiced speech output vs GAN iterations 

5.2. Objective performance 

For objective evaluation, we followed the methodology 

described in [19], and defined in the ITU-T P Suppl. 27 [20]. 

For the bandwidth requirement, we measure the Rx frequency 

response respective to the 3GPP Rx mask [21], using ITU-T 

P.501 British English speech material as the input. For speech 

quality, we measure the POLQA [22] score of BBE output 

with P.501 British English coded by AMR 12.2 kbps.  

    We plotted the POLQA scores for the BBE algorithms 

discussed above. The scores for AMR-NB at 12.2 kbps and 

AMR-WB at 8.85 kbps and 12.65 kbps are shown as the 

references. The results are shown in Figure 5, where 0dB 

indicates the response follows the lower limit of the mask. 

There is clear improvement from BBE-VQ to BBE-GMM to 

BBE-GAN, showing the increasing modeling power of the 
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statistical models used. Between GAN at iteration 0 and GAN 

at iteration 200 (fully trained), the maximum POLQA value 

is similar, however BBE-GAN at 200 iterations does 

maintain its POLQA score better at higher amounts of 

bandwidth. This is a good indication of the prediction quality, 

and is made possible by the reduction in the number of 

prediction artifacts from the fully trained GAN.  

  

Figure 5: POLQA MOS-LQO vs Bandwidth 

5.3. Subjective performance 

The subjective performance of the various BBE algorithms 

presented here was evaluated using the ITU-T P.800 

methodology. A Degradation Category Rating (DCR) [23] 

test was run at an independent test lab. The test was run using 

32 listeners, 42 conditions and 192 votes per condition. The 

results from the DCR test are shown in Figure 6, with error 

bars indicating 95% confidence intervals. The scores are 

consistent with the objective results shown in Figure 5. 

 

Figure 6: P.800 DCR MOS-LQS at 3GPP mask level 

    The rank-order of the BBE algorithms is maintained and 

BBE-GAN is statistically equivalent to AMR-WB at 8.85 

kbps. More testing results can be found for BBE-VQ and 

BBE-GMM in [19] (where they respectively correspond to 

algorithms BBE3 and BBE4). 

 

5.4. HB attenuation vs subjective quality 

We applied several filters to BBE-GAN to adjust the HB level 

from +5dB to -10dB relative to the 3GPP WB Rx mask. 

Figure 7 shows the P.800 DCR scores for these conditions. 

Note that, as in Figure 5, the level is relative to the lower mask 

limit, so that -5dB indicates a response below the lower limit 

of the mask, whereas +5dB indicates a response between the 

upper and lower limits of the mask. 

 

 

Figure 7: DCR MOS vs bandwidth 

    We observed that BBE-GAN maintains performance even 

at higher bandwidth levels, as predicted by the objective 

metric results shown in Figure 5. This also suggests that 

BBE-GAN is fully comparable with WB codec both in terms 

of bandwidth and quality, and confirms again that the 

objective evaluation aligns well with subjective results 

[19][20].  

 

6. CONCLUSION 

 

In this paper, we presented three generations of blind 

bandwidth extension technologies, from VQ to GMM to 

GAN. We find that machine learning such as GAN allow a 

significant step up in quality compared to classic statistical 

modeling techniques. GAN-based prediction allows the 

quality of BBE to be similar to WB codecs, achieving 

performance equivalent to AMR-WB 8.85 kbps quality both 

objectively and subjective. While BBE technology has been 

studied for many years, it has not been widely deployed as it 

could not offer quality similar to that of wideband codecs. We 

have shown that the use of machine learning techniques such 

as GAN allows BBE to reach that level of quality, which may 

potentially accelerate widespread adoption of BBE in 

telecommunication networks.  
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