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ABSTRACT

This paper introduces a technique for the supervised segmentation
of Air-Tissue Boundaries (ATBs) in the upper airway of the vocal
tract in the real time magnetic resonance imaging (rtMRI) videos.
The proposed technique uses a novel measure of contrast across a
boundary using Fisher discriminant function. ATBs in all frames of
an rtMRI video are jointly estimated by maximizing the proposed
measure of contrast around the predicted ATBs and incorporating a
smoothness constraint to ensure the ATBs in consecutive frames do
not change drastically. Dynamic programming is used for this pur-
pose. The accuracy of the proposed technique is evaluated separately
for the upper and lower ATBs using the Dynamic Time Warping dis-
tance between the predicted and the ground truth contours. Exper-
iments with rtMRI videos from four subjects show that the error in
ATB prediction using the proposed technique is 8.99% less than that
using a semi-supervised grid based segmentation approach. A key
feature of the proposed approach is that it can reliably predict the
ATB outside the vocal tract unlike those with the existing methods.

Index Terms— real-time magnetic resonance imaging, air-
tissue boundary segmentation, Fisher discriminant, dynamic pro-
gramming

1. INTRODUCTION

Real time magnetic resonance imaging (rtMRI) of the vocal tract in
the midsagittal plane while speaking is an invaluable tool for study-
ing human speech production. By providing images of the entire
vocal tract in a non-invasive manner [1], rtMRI proves itself to be
more effective than other available methods including Electromag-
netic Articulography (EMA) [2], X-Ray [3] and Ultrasound [4]. The
spatio-temporal information about various speech articulators ob-
tained from rtMRI not only offers insights into speech articulation
and acoustics but also sheds light on how speech production can be
modelled [5]. The spatio-temporal information about the various
speech articulators present in the vocal tract can be extracted by seg-
menting the upper airway of vocal tract in each frame of the rtMRI
videos. This is done by finding the set of points which represent
the boundary between the tissue and the air cavity in the vocal tract.
Air-Tissue Boundaries (ATBs) in the upper airway can be described
as contours which separate the regions of high pixel intensity (corre-
sponding to the tissue) from the regions with relatively lower pixel
intensity (corresponding to the airway cavity in the vocal tract). This
paper proposes a technique for accurately segmenting rtMRI videos
to obtain ATBs. The importance of accurately segmenting the upper
airway of the vocal tract stems from the need to study the time evo-
lution of the vocal tract cross-sectional area [6] which often forms
the basis for speech processing applications. For example, Patil et

al. [7] compares the articulatory control of beat-boxers using rtMRI
data to gain an insight into ways in which articulators can be trained
and used to achieve acoustic goals. Studies involving the analysis of
vocal tract movements [8] and morphological structures of the vocal
tract [9] require segmentation of rtMRI frames as a pre-processing
step. Toutios [10] also uses the estimated ATBs in the rtMRI videos
of the mid sagittal plane as the first step in developing a text-to-
speech synthesis system. Thus, it is clear that rtMRI videos require
ATB segmentation before analyses on the dynamics of the vocal tract
and different articulators can be carried out [11, 12, 13, 14].

Several works in the past have addressed the problem of ATB
prediction in rtMRI video frames using a number of techniques.
There are several robust methods [15, 16, 17, 18] for prediction of
ATB of the vocal tract by using a composite analysis grid lines su-
perimposed on each MR image. A Region of Interest (ROI) based
approach has also been proposed by Lammert et al. [19]. Asadia-
badi and Erzin [20] presented a statistical approach for segmentation
based on appearance and shape models for the human vocal tract.
Somandepalli et al. [21] tackled the problem of boundary tracking in
rtMRI frames as a pixel labelling problem and obtained contours us-
ing a greedy search of the probability maps. Lammert et al. [22] also
presented a data-driven approach to the segmentation problem based
on average intensities of pixels. The approach applied by Toutios
[23] and Sorensen [24] used factor analysis to derive compact rep-
resentations of vocal-tract outlines. Multi-directional Sobel opera-
tors were used in the tongue region to construct a boundary intensity
map by Zhang et al. [25]. Although unsupervised, semi-automatic
approaches such as those presented in [15, 18, 20, 22] have their ad-
vantages. However, a more accurate boundary can be obtained using
a supervised technique where boundary shapes can be learned from
training data rather than estimating in an unsupervised manner. This
may result in a more reliable prediction of the ATBs in the upper
airway of the vocal tract.

In this work, we propose a supervised approach for accurate
and nuanced segmentation as well as tracking of the ATBs in rtMRI
videos. The proposed approach offers several advantages over other
methods: (1) It reliably predicts contours by overcoming the imag-
ing artifact and grainy noise which could be challenging for unsu-
pervised or naive low-level gradient based approaches, (2) It also
results in a more accurate and realistic prediction of boundaries be-
cause it accounts for global contrast features in the ATB rather than
local gradients which is not guaranteed in unsupervised methods,
(3) It exploits the slowly varying nature of vocal tract morphology
and predicts the ATB jointly across multiple video frames unlike a
frame-by-frame segmentation in the existing methods.

Predicting ATB in rtMRI images can be viewed as a problem of
finding the boundary corresponding to the contour of maximal con-
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Fig. 1. (a) Illustrative air-tissue boundaries (C1,C2,C3) in an rtMRI
frame, (b,c) parts of the different contours used in this work

trast. The proposed method uses a novel measure of contrast based
on Fisher Discriminant Measure (FDM) along the contour for pre-
dicting the ATB. The proposed segmentation scheme also imposes
a temporal continuity constraint using Dynamic Programming (DP)
so that the predicted contours in consecutive frames do not vary er-
ratically. We begin with the description of the dataset used in this
work.

2. DATASET
USC-TIMIT [26] is a rich database of the rtMRI videos of the upper
airway in the midsagittal plane with a spatial resolution of 68 × 68
pixels (2.9 mm ×2.9 mm) at 23.18 frame/sec. The USC-TIMIT
rtMRI database contains data from five male and five female subjects
speaking a set of 460 sentences taken from the MOCHA-TIMIT cor-
pus [27]. The experiments in this work use rtMRI data for 10 sen-
tences each from two male subjects (M1,M2) and two female sub-
jects (F1,F2). The selected ten sentences correspond to 856, 753,
987 and 779 rtMRI frames for F1, F2, M1 and M2 respectively.

A MATLAB based GUI was used to manually trace the ATB
of the rtMRI frames, the details of which is available in [28]. Fig.
1(a) shows the three major manually drawn contours representing the
complete ATBs in a typical rtMRI frame. Upper lip (UL), lower lip
(LL), tongue base (TB), velum tip (VEL) and glottis begin (GLTB)
were also marked for each frame using the GUI. For the ATB seg-
mentation in this work as shown in Fig. 1(b) and Fig. 1(c) , Contour1
(C1) is divided into three parts - C11 corresponding to the upper
lip (UL), C12 corresponding to the hard palate whose position and
shape is manually chosen and kept fixed across video frames for a
subject and C13 corresponding to the Velum (VEL). Similarly, Con-
tour2 (C2) is divided into three parts - C21 which covers the lower
lip and jaw till the tongue base (TB), C22 which extends from the
tongue base (TB) along the tongue blade till the epiglottis (deter-
mined by the location of the groove in the epiglottis region) and C23

extending below the epiglottis. The contour C31 which marks the
pharyngeal wall till GLTB, remains fixed across all the video frames
for a subject.

3. PROPOSED AIR-TISSUE BOUNDARY SEGMENTATION

A measure of contrast along a given contour and a measure of prox-
imity between two contours of different lengths are required to de-
scribe the proposed segmentation technique.

3.1. Fisher Discriminant: Measure of Contrast
The proposed ATB segmentation approach uses the Fisher discrim-
inant function to quantify the contrast between the pixel intensities
on either sides of a given contour. A contour consisting of M points

is defined as: C
4
= {(xi, yi), 1 ≤ i ≤ M}, where xi and yi de-

note the X and Y coordinates of the ith point on the contour. xi and
yi align with the column and row indices respectively starting from
the top left corner of an rtMRI frame. In order to find a measure of
contrast along a given contour, the inner contour Cin and the outer
contour Cout are constructed from C. Each point of Cin and Cout
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Fig. 2. (a) Cin and Cout, (b) Contour stitching, (c) Contour Pruning

is found by drawing a normal to the corresponding point in C. The
distance between the corresponding points of Cin & C and Cout &
C is equal to the Euclidean distance between two successive points
of C.

For each point on Cin and Cout the corresponding pixel value
of the image is found using bicubic interpolation [29]. Thus the
collection of pixel intensities along Cin (Iin) and along Cout (Iout)
are denoted as: Iin = {I(xi, yi) | (xi, yi) ∈ Cin} and Iout =
{I(xi, yi) | (xi, yi) ∈ Cout}, where I denotes an image. The Fisher
Discriminant Measure (FDM) for a given contour C and an image I
is defined as:

DF (C, I) =
(Iin − Iout)2

σ2
Iin + σ2

Iout

(1)

where σ2
Iin and σ2

Iout are the variances of pixel intensities of Iin
and Iout respectively and Iin and Iout denote the sample average
of their respective pixel intensities. A high FDM results from not
only a large difference between the average pixel intensities from
the inner and outer regions but also the uniformity (low variance) of
pixel intensities in each region. The FDM value reflects the contrast
along the entire contour.

3.2. Measure of Proximity Between Two Contours
The alignment of any two given contours is measured using the DTW
distance [30]. Consider two contours Ca = {(xai , yai ) | 1 ≤ i ≤
Ma} and Cb = {(xbi , ybi ) | 1 ≤ i ≤ Mb} such that Ca(i) ∈ R2

and Cb(j) ∈ R2 represent the ith and the jth points’ co-ordinates in
Ca and Cb respectively. In order to find an optimal alignment map
{(ma(l),mb(l)) | 1 ≤ l ≤ L, 1 ≤ ma(l) ≤ Ma and 1 ≤ mb(l) ≤
Mb} between the points of Ca and Cb, the following optimization is
performed:

{(ma(l),mb(l)), 1 ≤ l ≤ L} = argmin
1≤m′

a(l)≤Ma,

1≤m′
b(l)≤Mb

L∑
l=1

||Ca(m
′
a(l))− Cb(m

′
b(l))||2

(2)

The DTW distance between two contours Ca and Cb is defined
as:

DD(Ca, Cb)
4
=

1

L

L∑
l=1

||Ca(ma(l))− Cb(mb(l))||2 (3)

DD(Ca, Cb) is less if two contours Ca and Cb have similar shape
and located close to each other. From the above equations, it can be
seen that the value of L is dependent on the lengths of the contours
Ca and Cb (Ma and Mb respectively). The distance measures DF

and DD can be computed irrespective of the lengths of the contours
(Ma and Mb).

The steps in the proposed ATB segmentation approach are sum-
marized in Fig. 3. Following pre-processing of the input test rtMRI
video, ATBs of different parts of C1 and C2 are predicted. Note that
C12 and C31 are not predicted, rather are fixed to a manually chosen
contour as these parts do not move during speaking. The predicted
contours are finally stitched and pruned to obtain the upper airway
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Fig. 3. Illustration of the steps in the proposed FDM-based approach

ATBs. The details of the steps are described in the following subsec-
tions.

3.3. Pre-Processing
Each frame of a test rtMRI video is enhanced using the technique
used in [15] to reduce the rtMRI artifact for better predictions of the
ATBs. Let a test rtMRI video containing NTest frames be repre-
sented by ITest such that ITest(k) represents the kth rtMRI frame
of the video. Following pre-processing, the enhanced video is repre-
sented by Ienh

Test.

3.4. Air-Tissue Boundary Prediction
The ATBs C11, C13, C21, C22, C23 are predicted in a specific order.
First the C11 and C13 are predicted using Ienh

Test which is followed
by partial image erosion (PIE) using the predicted C1. The image
sequence after PIE is used as the input to the prediction of C21 and
C22. Finally C23 is predicted after PIE using the predicted C21.
As different image sequences are used as the input for prediction of
different parts, we describe the boundary prediction using a generic
symbol for image sequence and the contour, namely I and C respec-
tively.

Let I represent an image sequence in an rtMRI video of length
N , where kth image is denoted by I(k). Let C = {C(k), 1 ≤ k ≤
N} denote the set of the contours of interest for boundary prediction
in N different images where C(k) denotes the contour in the kth

image. Let CTr be the respective set of NTr training contours. The
boundaries in N images are predicted by selecting the best contour
from the training set in each image such that the predicted contour
sequence varies smoothly as well as maximizes the overall FDM.
For this, the objective function J(C, I) is defined as:

J(C, I) =
N∑

k=2

DF (C(k), I(k))− λDD(C(k), C(k − 1)) (4)

DF and DD are defined in Eq. 1 and 3. The sequence of pre-
dicted contours for all the frames of I is obtained as:

C∗ = {C∗(k), 1 ≤ k ≤ N} = argmax
C∈{CTr(i),1≤i≤NTr}

J(C, I) (5)

The optimization problem above is solved using DP. The constant
λ in Eq. 4 is the temporal stiffness factor. The optimal value of λ
for every contour part is obtained separately using a development
set. These are denoted by λC11 , λC13 , λC21 , λC22 , λC23 for C11, C13,
C21, C22, C23 respectively.

As C12 is kept fixed during the optimization process, the conti-
nuity of the contours at boundary points of C11 & C12 and C12 & C13
is maintained by appending the extreme points of the hard palate
(C12) to the training contours CTr

11 and CTr
13 respectively. Thus the

complete set of predicted upper contours Ĉ1 for the image sequence
ITest is constructed by concatenating C∗11, C∗12 and C∗13 and remov-
ing the duplicate boundary points.

Similarly, Ĉ2 is obtained by concatenating C∗21, C∗22,, C∗23. In
order to avoid Ĉ2 intersecting Ĉ1, we perform PIE of Ienh

Test using
Ĉ1. Details of PIE are described in the next subsection. It should be
noted that the part C31 of contour C3 is not predicted rather Ĉ31 is
kept fixed to a manually chosen contour for all rtMRI frames.

3.5. Partial Image Erosion
Partial Image Erosion (PIE) is performed in order to ensure that Ĉ2
is below the predicted upper ATB (Ĉ1) and to improve the accuracy
of C∗23. PIE is performed twice in the proposed ATB prediction -
(1) before predicting C∗21 and (2) before predicting C∗23. Before the
prediction of C∗21, all the training contours CTr

21 which intersect with
Ĉ1 for the respective rtMRI frames are removed. Then the set of
pixels in a column with a row index lesser than the respective Ĉ1
is made zero in each frame of Ienh

Test. The modified sequence of
rtMRI frames, thus obtained, is represented by IpieTest,C1

. After C∗21
is obtained, to prevent C∗23 from intersecting C∗21, the collection of
pixels in a row of Ienh

Test with column indices more than those in
the points in C∗21 are made zero. The sequence obtained from this
operation is represented by IpieTest,C2

.
PIE before predicting C∗21 and C∗23 ensures that the solution of the

respective optimization (Eq. 5) comes from a subset of CTr which
do not intersect with Ĉ1 and C∗21 thus resulting in a more accurate
ATB prediction.

3.6. Contour Stitching
Because the lower ATB prediction is done in three separate parts, a
simple concatenation of C∗21, C∗22 and C∗23 does not ensure a smooth
Ĉ2. In order to prevent erratic and jagged contours at the junctions
of C∗21 & C∗22 and C∗21 & C∗23, contour stitching is performed. This is
done by considering the end parts of the two contours at the junctions
and trimming the end of the contour with higher row index till it
matches with the row index of the end point of the other contour.
To illustrate the contour stitching, a zoomed in view of the part of
the rtMRI frame in the pink box in Fig. 1(b) is shown in Fig. 2(b),
where the red and blue points correspond to the contour C∗21 and
C∗23 respectively. C∗21 is trimmed to obtain a smooth lower ATB Ĉ2
(shown in green).

3.7. Contour Pruning
The predicted ATBs as described in the section 3.4 span regions
both inside and outside the vocal tract. In order to obtain bound-
aries within the vocal tract, we use two different strategies for upper
(Ĉ1) and lower (Ĉ2) ATBs. For pruning Ĉ1, at first the velum tip is
automatically detected by finding out the index for change in the di-
rection of row values in C∗13. Following this, Ĉ1 is segmented from
UL to VEL tip and concatenated with C∗31 till GLTB to obtain Ĉprun1 .
Note that the point corresponding to GLTB is a part of C∗31 and thus
remains fixed for all the frames of the test rtMRI video.
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Fig. 4. Illustration of upper airway ATBs using MG and FDM
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Similarly, the Ĉ2 is pruned from LL to GLTB. However, the seg-
ment of Ĉ2 near tongue base (near the junction between C∗21 and
C∗23) does not reflect the actual vocal tract cross sectional area due
to the presence of lower teeth. In order to obtain a smooth boundary
in this region, at first, the point (C1

tb) with the lowest row index in
C∗23 (typically near LL) is identified and the point (C2

tb) on the C∗21
with this row index is selected. A segment of length Ntb in Ĉ2 from
C1

tb to C2
tb is denoted by Ctb = {(xtbi , ytbi ), 1 ≤ i ≤ Ntb}. Ctb

in Ĉ2 is replaced with Csm = {(xtbi , ysmi ), 1 ≤ i ≤ Ntb}, where

ysmi
4
= a0 + a1x

tb
i + a2(x

tb
i )2. Coefficients of the polynomial are

obtained as follows:

{a0, a1, a2} = argmin
α,β,γ

Ntb∑
i=1

(y
tb
i − (α+ βx

tb
i + γ(x

tb
i )

2
))

2

subject to α+ βx
tb
i + γ(x

tb
i )

2 ≤ ytbi , ∀i

(6)

After Ctb is replaced with Csm, the pruned predicted lower ATB
is denoted by Ĉprun2 .

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup
The ATBs are estimated from the rtMRI data for each subject (F1,
F2, M1 and M2) separately using a five-fold cross-validation setup.
In each fold, eight training and two test rtMRI videos are used in a
round-robin fashion. Among the eight training rtMRI videos, five
are used for training and the remaining three videos are used as the
development set. The training contours corresponding to different
parts of C1 and C2 are obtained from the manually traced boundaries
as illustrated in Fig. 1(b) and 1(c).

The evaluation of the predicted contours is done using the DTW
Distance DD between the manually traced and predicted ATBs
(Eq. 3). The DTW Distances have the unit of pixel. In this work,
we have performed two kinds of evaluations: (1) evaluation of the
ATBs within the vocal tract (Ĉprun1 , Ĉprun2 ) predicted using FDM.
A Maeda Grid (MG) based approach [15] is used as a baseline for
comparison, (2) evaluation of the complete predicted contours Ĉ1,
Ĉ2, and C3. To obtain the ground truth contour for evaluation of
Ĉprun1 and Ĉprun2 , we have pruned the upper and lower manually
traced ATBs within vocal tract following the steps outlined in section
3.7. The pruned manually traced boundaries are denoted by Cprun1

and Cprun2 . The evaluation of MG and FDM based approaches
was done by comparing the predictions of each approach with the
corresponding hand-annotated ground truth ATBs.

4.2. Results and Discussion
Table 1 shows the average (± standard deviation)DD(Cprun1 , Ĉprun1 )

and DD(Cprun2 , Ĉprun2 ) (in pixels) using both MG and the proposed
FDM schemes. It is clear from the table that the proposed FDM
approach, on average, results in a lower DTW distance compared
to the baseline MG scheme. The average error of the lower and
upper ATBs across the four subjects from the FDM approach is

Lower ATB Upper ATB

Sub MG FDM MG FDM
F1 1.09 ± 0.22 1.02 ± 0.24 1.00 ± 0.17 0.95 ± 0.17
F2 1.28 ± 0.29 1.27 ± 0.26 1.42 ± 0.35 1.20 ± 0.22
M1 1.31 ± 0.57 1.25 ± 0.26 1.18 ± 0.19 1.10 ± 0.20
M2 1.38 ± 0.31 1.17 ± 0.28 1.37 ± 0.23 1.17 ± 0.24

Table 1. ATB prediction error in pixels (average ± standard devia-
tion) using MG and FDM schemes
8.99% lower than the average error in the predicted contours ob-
tained from the baseline MG scheme. Fig. 4(a) and (b) show two
sample rtMRI frames for which the ATBs obtained by the proposed
FDM approach are more accurate than the baseline MG scheme.
The superior performance using the FDM scheme could be due to
the fact that the FDM (Eq. 1) is robust to local rtMRI artifact. The
temporal constraint used in the optimization (Eq. 4) also prevents
the proposed FDM approach from predicting jagged contours and
yields smoothly varying contours across rtMRI frames.

Fig. 4(c) and Fig. 4(d) illustrate two frames where the MG
approach yields more accurate boundaries than the FDM approach.
This happens because the training contours of the subject do not have
a velum contour (C13) as observed in the test case. The predicted
ATB in Fig. 4(d) is not as accurate as the one obtained from the
MG scheme. This happens because a significant length of the velum
tissue is in contact with the tongue dorsal causing FDM value to drop
for the actual ATB contour.
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Fig. 5. Illustrations of full contour prediction using FDM scheme

In addition to predicting the pruned ATBs inside the vocal tract,
complete contours Ĉ1 and Ĉ2 are also predicted as shown in Fig. 5
using one example frame for each of the four subjects. The evalu-
ation of the full predicted contours Ĉ1 and Ĉ2 was done separately.
The average (± standard deviation) DTW distances (in pixels) be-
tween Ĉ1 and the ground truth for F1, F2, M1 and M2 are 0.92 ±
0.12, 1.09 ± 0.19, 1.13 ± 0.18 and 1.17 ± 0.25 respectively. Sim-
ilarly, the average (± standard deviation) DTW distances (in pix-
els) between Ĉ2 and the ground truth for F1, F2, M1 and M2 are
0.83± 0.13, 0.99± 0.17, 0.98± 0.16 and 0.98± 0.18 respectively.
Thus it is clear that the proposed FDM scheme reliably predicts the
complete ATB in both inside and outside the vocal tract.

5. CONCLUSION
In this work, we propose a supervised approach for ATB prediction
in the midsagittal rtMRI videos. As the ATB shapes are learned
from the training data, the proposed method performs well across
four subjects considered in this work. This robust performance of
the proposed scheme is due to the proposed measure of contrast and
joint prediction of ATBs across all frames in a video ensuring tem-
poral continuity unlike frame-by-frame ATB prediction in existing
methods. The proposed scheme could be further improved by de-
veloping a deformation model of the contour to deform a training
contour to better fit a given frame.
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