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ABSTRACT 
 
A new technique for representing speech articulation with 
an ultrasound-driven finite element model of the tongue is 
presented. By using a snake contour extraction algorithm 
with anatomically motivated constraints and a common 
coordinate system between the ultrasound and the tongue 
model, it is possible for the first time to obtain a realistic 3D 
simulation of the tongue directly from a non-invasive sensor 
(ultrasound), without mapping through any intermediate 
sensor modalities, and at near real-time frame rates.  
 

Index Terms— speech production, ultrasound, silent 
speech interface, active contours, dynamic programming 
 
 

1. INTRODUCTION 
 
Detailed information on tongue shape during articulation is 
of great interest in speech production research; for the 
treatment of speech pathologies; as an aid in language 
learning and rehabilitation; as well as for non-acoustic 
speech recognition for Silent Speech Interfaces (SSI) [1]. As 
most of the tongue is normally not visible, obtaining such 
information often involves invasive sensors such as 
electropalatographic (EPG) palate inserts [2], 
electromagnetic articulography (EMA) sensors glued to the 
tongue [3], or magnetic resonance imaging (MRI) [4]. Non-
invasive ultrasound (US) tongue images are also widely 
used, but can be difficult to interpret due to speckle noise, 
inhomogeneous echogenicity, and experimental artifacts [5]. 
Representing a speaker’s tongue motion in real time both 
accurately and non-invasively remains a challenging goal. 

In this article, we show that by applying “anatomical 
constraints” to a dynamic snake tongue contour extraction 
algorithm, and imposing a common coordinate system 
between the ultrasound probe and a 3D Finite Element 
Model (FEM) of the tongue, the model can be driven in a 
realistic way directly from the ultrasound images. 
 
 

2. RELATION TO PRIOR WORK 
 
A number of approaches to real time modeling of tongue 
movement during articulation have appeared in the literature 
in the past few years. In the pioneering work of Yang and 
collaborators [6], constraint nodes in a tongue FEM were 
animated directly using coordinates of EMA sensors – 
which unfortunately must be glued onto the tongue. One 
non-invasive approach is to use the acoustic speech signal to 
estimate and display a speaker’s most probable tongue 
movements, either by creating synthetic EMA coordinates to 
drive constraint nodes in a tongue model, as in [7], or by 
direct inversion of the speech signal, as in the talking head 
display of [8]. However, for applications in speech 
pathology and rehabilitation, language learning, SSI, and the 
like, deducing tongue movement from acoustic input is a 
serious difficulty. Too, to be most useful for these 
applications, a system should display a speaker’s actual 
tongue movements, not simply the most probable ones.  

Non-invasive ultrasound imaging may be a solution to 
such concerns. In [9], for example, a Gaussian Mixture 
Model (GMM) was used to map the first 20 principal 
components of ultrasound tongue images onto virtual EMA 
coordinates to drive a talking head. Clearly, though, it would 
be preferable to use ultrasound to animate an FEM directly, 
without passing through any intermediate modalities – 
basically replacing the EMA of [6] with ultrasound. A 
system to do this was proposed in [10][11], where 
unfortunately pathological configurations of the model were 
often encountered. In [12], such pathological behavior was 
avoided by matching an ultrasound contour to tongue 
configurations contained in a previously defined 
“dictionary”, which unfortunately restricts the range of 
possible shapes, and in any event requires 1.2 seconds per 
frame to perform. 

The method proposed here uses ultrasound images to 
directly animate a tongue FEM at near real time rates, by 
using anatomical considerations and ultrasound/model 
coordinate matching to control model instability. The tongue 
model and driving method are introduced in the following 
section, while the innovative aspects of this work are 
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presented in section 4. Results, including links to video 
demonstrations, appear in section 5, and some conclusions 
and perspectives for future improvements are given in the 
section 6.      
 

3. TONGUE MODEL 
 
3.1. Parameters and registration   
 
The tongue FEM used has been described elsewhere, [6] 
[10][11][12]. It makes use of the Artisynth generic tongue 
mesh [13], further subdivided into 13,000 nodes and 44,000 
tetrahedral elements. The at-rest sagittal contour of the 
model was aligned and scaled by hand to coincide as well as 
possible with a selected rest position ultrasound contour, 
including the hyoid position, placing the base of the tongue 
at the ultrasound probe. 
 
3.2. Animation approach   
  
To avoid the complexities of a muscle-driven model, 
animation was performed by assigning displacements to 
four constraint nodes, approximately equally spaced on the 
upper part of the mid-sagittal contour, avoiding the tongue 
tip, which does not image well in ultrasound. A fifth 
constraint point was chosen at the model hyoid, whose 
position in the mesh is known. The nodes are indicated in 
figure 1a by yellow dots on the sagittal contour, shown in 
pink, superimposed on an ultrasound tongue image. The 
base of the model tongue was secured by defining all nodes 
located there as anchor nodes. One iteration of the model 
animation consists of updating the coordinates of the 
constraint nodes with information obtained from the most 
recent ultrasound image, and solving the resulting new 
equations of motion. The update procedure is described in 
section 4.  
 
3.1. Model stability  
 
When driving a tongue FEM with a small number of 
constraint nodes, pathological configurations may arise in 
the following situations: 

1. Two constraint points drift too close together, due 
to noise or contour tracking issues, causing  
“bulging” in the model due to its (approximate) 
incompressibility. Constraint nodes drifting too far 
apart, in turn, can lead to “drooping” of the model. 

2. A too large constraint node excursion, arising from 
unstable contour extraction, may drive the model 
into a configuration from which it never recovers. 

3. Constraint node displacement errors due to a 
mismatch of coordinate systems between the 
ultrasound image and the model can accumulate 
and lead to instability. 

4. The model must be able to attain the constraint 
node displacement targets in the time allocated, to 
prevent accumulation of errors.  

 
4. CONTOUR EXTRACTION AND MODEL UPDATE 
 
The ultrasound contour extraction algorithm and model 
update procedure were designed to address the stability 
concerns mentioned above.   
 
 

 
 
Figure 1. a) Pink curve and yellow dots are mid-sagittal contour 
and constraint nodes, respectively, of the tongue FEM. Snake 
points (upper white dots) are initialized in the upper part of image 
and attach themselves to the true contour in only a few frames; b) 
Distances from snake points to center of ultrasound transducer; c) 
Positive contour slope on left, negative on right; d) Ascending 
order of lines from snake points to hyoid bone. 
 
4.1. Snake algorithm with “anatomical constraints”  
 
The ultrasound data consist of disk files of tongue images 
acquired at 70 frames per second with a 4-8 MHz, 128 
element microconvex probe maintained beneath the 
speaker’s chin on an acquisition helmet. The tongue contour 
is represented by a 15-point snake [14] superimposed on the 
image, updated on each frame read from the file to reflect 
the tongue’s movement since the last frame (the snake 
initialization procedure will be discussed below). To 
perform an update, the algorithm uses dynamic 
programming to select the 15 new snake points that both 
maximize the snake energy and satisfy a set of additional 
constraints. Snake energy consists of an external part, Eext, 
related to the image intensity, and an internal part Eint 
determined by the internal configuration of the snake. 

To calculate Eext, the update algorithm considers new 
snake point candidates within 3 pixels of their previous 
positions. Each candidate makes a contribution to Eext of R + 
d, where R is the total intensity in a 3 by 3 pixel block 
centered on the new point, and d the absolute distance in 
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pixels from the point to the center of the ultrasound 
transducer (see figure 1b). Maximizing R thus favors bright 
regions on the tongue contour that are consistent with 
typical tongue velocities at 70 frames per second; while 
maximizing d penalizes unphysical, spurious contours that 
might appear in the noisy lower part of the image. 
 
Table I. Snake algorithm pseudocode 

 
for 

2 1i i iv v v− −
 (i:=2-14) begin 

 for 
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     {update dyn. prog. array dp[
iv ][pos

iv ][pos
1iv −
]  

     by Eext and Eint if > orig. val.} end end end end 
  
Eint is given by the sum of the angles between adjacent 

snake segments, thus favoring “smooth” contours. The 
additional constraints below, related to the internal 
configuration of the snake but not included in Eint, are easily 
handled with dynamic programming, see the algorithm 
pseudocode in Table I. 

• Distances between adjacent snake points must be 
between 7 and 11 pixels inclusive, to inhibit 
unnatural compression or stretching of the tongue; 

• A positive slope is required on the left of the 
contour, and a negative one on the right (see figure 
1c), corresponding roughly to the shapes of the 
tongue root and dorsum regions; 

• Slopes of lines drawn from snake points to the 
hyoid bone must have ascending order, see figure 
1d. This constraint both penalizes unphysical 
tongue compression and allows for rapid algorithm 
recovery after swallowing, which otherwise causes 
the snake to break loose from the contour. The 
hyoid location is easily determined by finding the 
darkest 5 x 5 pixel area in the hyoid shadow region 
of the ultrasound image. 

These “anatomical” constraints, which can be considered as 
deriving both from the properties of the actual speaker’s 
tongue in the ultrasound image, and the physical model that 
is supposed to represent it, are quite important for the 
quality of the contour tracking. 

To initialize the snake, 15 points forming a suitably 
shaped curve are placed in the upper part of the first image, 
away from the tongue body. The snake automatically 

attaches itself to the true tongue contour within a few frames 
during the normal running of the algorithm, see figure 1a, 
where four of these initial snake points appear as white dots. 

A comparison of performance to the popular EdgeTrak 
[5] algorithm, which also uses a snake approach, has not 
been made; however, the manual initialization and periodic 
resets necessary with EdgeTrak would make its use for 
driving a model rather more difficult.   
 
4.2. Model update procedure 
 
Once the snake points have been updated, a new set of 
constraint node coordinates must be furnished to the tongue 
model so that it may evolve to its new configuration. Snake 
points numbered 3, 6, 10, and 14 (proceeding left to right in 
the image), as well as the hyoid point, were chosen to create 
input for the model; these appear as white dots in figure 1a 
at their initialized locations. At each new image, the snake 
and hyoid locator algorithms provide the horizontal and 
vertical displacement values of these 5 points, dxi and dyi, i 
= 0-4 (with 0 the hyoid point), relative to the preceding 
frame, and expressed in pixels on the ultrasound image.  

The corresponding displacements of the model 
constraint nodes are defined as Δxi = αdxi and Δyi = αdyi, 
where α is a fixed scale factor, and the constraint nodes are 
also numbered 0-4 left to right. Although snake points, 
contrary to the constraint nodes, are not tissue points, this 
simple procedure nonetheless gives reasonable results. The 
value of α was determined manually (final value α = 0.015), 
so as to make the movement of the model sagittal contour 
coincide as closely as possible with the movement of the 
ultrasound contour and hyoid bone.  

 
4.3. Implementation 
 
Due to the rather different computing environments of the 
model and snake programs, the two algorithms presently run 
on separate computers, communicating over a tcp socket. In 
the current setup, the system is implemented in the 
following way: 
  

1) An ultrasound image is read in from the file by the 
contour tracking program, running on a Dell 
workstation. 

2) The snake algorithm runs until completion. 
3) The resulting dxi and dyi values are sent to a socket 

via tcp. 
4) The tongue model computer, a Mac Pro, retrieves 

dxi and dyi, calculates Δxi and Δyi, and simulates 
until the model update is completed. 

5) Repeat from 1). 
 
Due to overheads from model (60%) and snake (40%) 
processing, the current free-running throughput of the 
system, implemented in the way described above, is 21 
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frames per second, that is, only about a factor of 3 away 
from the original 70 Hz acquisition rate.  
 

5. RESULTS AND DISCUSSION 
 
A short video of the results, showing the model and the 
ultrasound frame with snake and model sagittal contour 
superimposed, can be accessed at [15]. The speaker 
pronounces a few isolated /g/ and /t/ and then repeats the 
word “escalator” several times. The video has been speeded 
up to the original 70 frames per second ultrasound 
acquisition rate in order to accurately represent the tongue 
motion. It is seen that the model follows the movement of 
the snake rather faithfully – apart from some obvious 
artifacts – even for large excursions of the tongue. Four 
stills from the video appear in Figure 2. A second, longer 
version of the 70 Hz video, showing just ultrasound and 
sagittal contour, can be viewed at [16], where the pink 
horizontal and vertical lines in the images are estimates of 
the palate and upper teeth positions, respectively. 

While the performance of the system can certainly be 
improved, we believe this to be the first time a 3D tongue 
model has been directly driven in a believable way at near 
real time using a non-invasive sensor – in this case 
ultrasound. 
 

 
 
Figure 2. Four screen captures of the tongue model driven by 
ultrasound images during speech. 
 

6. CONCLUSIONS AND PERSPECTIVES 
 
By using a snake algorithm with anatomically motivated 
constraints, and a common coordinate system between 
ultrasound images and a 3D tongue model, we have shown 
that realistic, direct animation of a tongue model from a 
non-invasive source is possible by assigning snake point 
movements to a small set of constraint nodes. The system  
currently achieves a throughput of 21 frames per second. If 
the model and ultrasound acquisition can be merged onto a 
single, more powerful computational platform, it should be 
possible to drive the model directly from 70 Hz ultrasound. 
The snake tracking algorithm works well on speakers with 
tongues not too dissimilar to the default model. Elastic 
registration of the model mesh to individual speakers will 
allow the tests to be properly extended to additional 
speakers in the future. More elaborate animation schemes 

that better approximate a muscle-driven organ are also to be 
investigated.  
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