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ABSTRACT

A recurrent neural network is a powerful tool for modeling
sequential data such as text and speech. While recurrent neu-
ral networks have achieved record-breaking results in speech
recognition, one remaining challenge is their slow process-
ing speed. The main cause comes from the nature of recur-
rent neural networks that read only one frame at each time
step. Therefore, reducing the number of reads is an effec-
tive approach to reducing processing time. In this paper, we
propose a novel recurrent neural network architecture called
Skip-RNN, which dynamically skips speech frames that are
less important. The Skip-RNN consists of an acoustic model
network and skip-policy network that are jointly trained to
classify speech frames and determine how many frames to
skip. We evaluate our proposed approach on the Wall Street
Journal corpus and show that it can accelerate acoustic model
computation by up to 2.4 times without any noticeable degra-
dation in transcription accuracy.

Index Terms— recurrent neural networks, neural acous-
tic models, dynamic frame skipping, policy gradient methods

1. INTRODUCTION

Deep neural network (DNN) acoustic models have been
shown to perform very well for large vocabulary continu-
ous speech recognition (LVCSR) [1]. As an alternative to
DNNSs, recurrent neural networks (RNNs) are more suited
for modeling sequential data such as speech signals. In par-
ticular, acoustic models based on Long Short-Term Memory
(LSTM) units [2] have been shown to outperform DNNs and
conventional RNN based acoustic models in LVCSR [3, 4].
Despite their excellent performance, one drawback of
RNN-based models is their slow processing speed. It is
prevalent in many recurrent models that process a sequence
of speech frames one frame at a time, thereby introducing
sequential dependencies which increase the processing time
in proportion to the length of an utterance. One effective ap-
proach to accelerating the processing speed of neural acoustic
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Fig. 1. Static vs. dynamic frame skipping. The first row
shows label (HMM state) repetitions in a training example.
Whenever a label changes, the color changes either from
black to red or red to black. The boxes indicate the non-
skipped speech frames in different frame skipping strategies.

models is to skip speech frames that are not relevant in achiev-
ing high accuracy. This technique is called frame skipping
and was first proposed in [5] for DNN acoustic models. In-
stead of making a prediction for each speech frame, acoustic
model computation is done at a lower frame rate and the
predicted labels for the non-skipped frames are copied to the
skipped frames. Frame skipping was also applied to RNNs
in [6]. We refer to these approaches using a fixed skip rate
as static frame skipping in the sense that speech frames are
skipped at a predefined interval without considering informa-
tion variability in speech signals.

Although static frame skipping can reduce processing
time without significant degradation in transcription accu-
racy [0], fixed skipping intervals fail to consider the variable
durations of phonemes. This motivates us to consider the
more adaptive strategy proposed in this paper, which we
call dynamic frame skipping. For example, Fig. 1 shows the
durations of the labels (i.e., HMM states) extracted from a
training example. An acoustic model using static frame skip-
ping reads the speech frames at every pre-defined interval,
regardless of whether a label changes or not. On the other
hand, an acoustic model using dynamic frame skipping can
adaptively skip the speech frames by detecting label changes.
Therefore, dynamic frame skipping can avoid reading redun-
dant frames, and the processing time can be further reduced.
The concept of dynamically skipping time steps for RNNs has
been applied in the NLP domain [7], where the authors pro-
pose a task specific architecture designed for NLP problems
such as sentiment analysis and automatic Q&A. However, the
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architecture is not readily applicable to acoustic modeling.

In this paper, we propose a novel recurrent neural net-
work architecture called Skip-RNN, which can be used to skip
speech frames dynamically based on information variability
in the input utterance. The Skip-RNN consists of an acoustic
model network and skip-policy network, which share some
of the internal representations of speech signals. The whole
network is jointly trained to classify speech frames and de-
termine how many frames to skip. The skip-policy network,
whose objective function is non-differentiable, is trained by
a policy gradient method. We evaluate the proposed archi-
tecture on the Wall Street Journal corpus by training LSTM-
based acoustic models. We show that our dynamic frame
skipping approach can accelerate acoustic model computa-
tion by up to 2.4 times, while maintaining almost the same
transcription accuracy. We also demonstrate through visual-
ization that the trained model is able to predict the durations
of HMM states and make skip decisions accordingly.

2. RELATED WORK

Frame skipping is grounded on the idea of exchanging the ac-
cess to information with speed gain by not wasting the com-
putational effort to process that information, thereby trading
off between accuracy and speed. There have been sophis-
ticated variable-rate processing schemes that are mainly de-
veloped for GMM/HMM systems [8, 9]. Frame skipping is
first applied to DNN acoustic models in [5]. Instead of emit-
ting the prediction at every speech frame, an acoustic model
runs at a lower frame rate. In [0], frame skipping is applied
to RNN acoustic models. The authors find that, when frame
skipping is applied to an RNN acoustic model only at test
time, the performance degrades severely because frame skip-
ping breaks the original temporal dependency modeled dur-
ing training. To remedy the mismatch between training and
testing times, an RNN acoustic model is trained also with
frame skipping by splitting each training utterance into mul-
tiple shorter utterances. A similar idea is also considered
in [10] for conventional RNN acoustic models and [! 1] for
CTC-based ones where acoustic model computation happens
at a reduced frame rate.

Our method is motivated by the work of [7] in which the
authors propose a recurrent neural network architecture that
can selectively process words in a sentence. Although the
architecture is similar to ours, it is designed to solve NLP
problems and not directly applicable to acoustic modeling.

3. MODEL

In this paper, we follow the standard approach used in hy-
brid systems [12], where frame-level HMM states given by a
GMM-HMM system through forced alignment are provided
as targets.
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Fig. 2. An example showing how the Skip-RNN processes
a training example. The alphabets indicate the labels (HMM
states). For brevity, instead of showing the output of the la-
bel softmax layer, the label with the highest probability is
shown. The numbers in the shaded boxes indicate the skip
actions sampled from the outputs of the skip softmax layer.
The dashed boxes indicate that the labels in them are copied
from the non-skipped frames.

Frames

The Skip-RNN is a deep LSTM-RNN with two output
layers on top: the label and skip softmax layers. The label
softmax layer has an output dimension that corresponds to
the total number of possible HMM states. The skip softmax
layer matches its output dimension to the maximum allowable
number M of frames to skip. The first dimension of the skip
softmax layer corresponds to the probability of not skipping
any frame, the second the probability of skipping one frame,
and the n-th the probability of skipping n — 1 frames.

From now on, we describe how the Skip-RNN processes
frames from a training example. Given a training example
x1.7, it reads the first frame x; and computes its hidden
states. Then the last hidden state is used to compute the
label softmax distribution that determines the distribution
over the HMM states and the skip softmax distribution that
determines the distribution over the skip actions. Let s; be
a skip action drawn from the skip softmax distribution to
decide how many frames to skip, then the next frame to read
becomes 1 (s, +1), and the output of the label softmax layer
is copied to the skipped frames. This process continues until
the last frame z is reached. Figure 2 illustrates how the
Skip-RNN processes a training example.

The Skip-RNN contains a set of parameters ; that are
used to predict the HMM states and another set of parameters
05 that are used to predict how many frames to skip. The
optimization for #; can be done by minimizing the negative
log-likelihood using stochastic gradient descent, as done in
typical acoustic model training. On the other hand, finding 6
can be handled as a reinforcement learning problem by using
the standard policy gradient method [13].
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3.1. Reward Function

Let s1. 5 be a sequence of skip actions during the training with
a training example x1.7, and h; be the last hidden state that is
used to determine the ¢-th skip action s;. The ¢-th skip action
s; is obtained by sampling from the multinomial distribution
p(si|hi; 05) given by the skip softmax layer. A reward is given
to each skip action under the current skip policy 7y, .

The Skip-RNN attempts to skip as many frames as pos-
sible without loss of accuracy. To this end, the Skip-RNN is
designed to skip all the frames except the first one within the
duration of an HMM state. Let M be the maximum allow-
able number of frames to skip, and y;.7 be the label sequence
of the example x1.7. Suppose that the Skip-RNN is about to
make the ¢-th skip decision while processing the j-th frame
with the corresponding label y;. Let the number of frames
the label y; is repeated starting from the j-th frame be D(y;).
Under the constraint that the maximum allowable number of
frames to skip is M, the target number of frames to skip for
the i-th skip decision is s} = min(D(y;), M). We give the
reward, r;, to the i-th skip action as follows:

ri = —|s; — s €))

That is, we penalize the network in proportion to how
much mistake it makes. This is because otherwise the net-
work would make large skips to get penalized less often. Note
also that we do not give a posive reward to the correct skip to
prevent the network from accumulating rewards by making
small skips over short-lasting HMM states.

3.2. Training with Policy Gradients

The policy gradient method maximizes the following ex-
pected cumulative future rewards, J(0s) = Er,_ {Z'ﬁil i tr;

whose gradient is:

N

Vo, J(0s) = En, Zvé?s logmo, (silhi)Ri|, (2)
i=1

where R; = ZkN:i 7#~iry is the cumulative future re-

wards for the current action', and «y € [0, 1] is a discount fac-
tor. Eq. 2 can be approximated by sampling action trajectories
from the current policy 7, and collecting the corresponding
rewards”.

IInstead of v*~1, we use v*~* that has less bias.

2We tried estimating the parameters 6 by supervised learning, using tar-
get skips s as the targets for the skip softmax layer. However, the resulting
network performed worse than the one trained by policy gradients in terms
of processing speed. We conjecture that this is because supervised learning
is concerned only with maximizing immediate rewards, without considering
future rewards, i.e., it is similar to the case when v = 0 in Eq. 2. But in gen-
eral, as noted in [14], acting to maximize immediate rewards may actually
reduce the sum of the rewards.

The variance of the estimated gradients can be high. We
thus adopt the variance reduction strategy of [ 1 5]. We subtract
from R; the output of a linear baseline b(h;) that depends on
the last hidden state h;. This does not change the value of
the expectation in Eq. 2 while reducing the variance. The
parametrized baseline is trained to minimize the squared loss
between R; and b(h;). We also regularize the network by
adding the entropy of the policy H (g (+|h;)) to the objective
function, as suggested in [16], to encourage more exploration
and prevent premature convergence.

4. EXPERIMENTS

4.1. Settings

We evaluate the proposed method on a benchmark dataset
for large vocabulary automatic speech recognition: the Wall
Street Journal (WSJ) corpus [17]. The WSJ corpus primar-
ily consists of read speech with texts drawn from a machine-
readable corpus of Wall Street Journal news text. We follow
the standard Kaldi recipe s5 [18] to prepare the speech data.
A baseline GMM-HMM system is trained on the 81 hours
training set (train_si284) by Kaldi recipe tri4b, which consists
of LDA preprocessing of data with MLLT and SAT for adap-
tation. We generate a forced alignment for each utterance to
obtain frame-level targets. There are 3436 triphone states in
total. We use the dataset test_dev93 as the development set
and test_eval92 as the test set. Each frame in the acoustic
signal is represented by 40 log Mel-filterbank outputs (plus
energy), together with their first and second derivatives. Each
utterance is then represented as a sequence of frames where
the size of each frame is 123.

All neural acoustic models in the experiments have four
unidirectional LSTM hidden layers with 512 LSTM cells
in each layer without peephole connections. For the base-
line acoustic model, we use the static frame skipping (SFS)
method proposed in [6]. Each training utterance is split
into K shorter sub-utterances, where i-th sub-utterance is
formed by extracting and concatenating the frames at time
i,1+ K,i+2K,... (1 <1 < K). This increases the num-
ber of training utterances by K times. At test time, the first
sub-utterance for each test utterance is always used.

The Adam optimizer [19] is used to train all models with
the initial learning rate set to 0.001. We block the gradients
from flowing through the last hidden state when updating the
parameters 6 with policy gradients in order to stabilize the
training process. We apply gradient-norm clipping with a
threshold of 1.0. The mini-batch size is set to 16. The dis-
count factor + is set to 0.99 in all experiments. During infer-
ence, we use greedy evaluation by selecting the most probable
skip action given by the skip softmax output.

We measure only the forward propagation time spent on
numerical operations as in [5, 6]. Optimization and imple-
mentation techniques in auto-differentiation frameworks such
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Method Dev WER (%) Frame Usage (%) Time (sec) | Test WER (%) Time (sec)
SFS (K =1) 8.36 100 848 5.87 551
SFS (K =2) 8.61 50 446 6.04 286
SFS (K = 3) 8.91 33 310 5.95 200
SFS (K =4) 9.21 25 242 6.52 257
SES (K =5) 10.37 20 199 6.98 128
Skip-RNN (M = 4) 8.63 40 384 6.18 250
Skip-RNN (M = 6) 8.50 37 352 5.71 235
Skip-RNN (M = 8) 8.56 36 350 6.40 230

Table 1. Comparison between static frame skipping and our proposed method on the WSJ corpus.

as TensorFlow [20] can heavily affect computation speed. In
order to make a proper comparison, those factors are not con-
sidered. The reported times are measured by running each
model one pass on the whole dev or test set. All models are
implemented in TensorFlow.

4.2. Results

Table 1 shows the word error rates (WERSs), frame usage, and
times for acoustic model computation of the SFS and Skip-
RNN on the dev and test sets. In the SFS, the WER increases
rapidly as more frames are skipped. For example, while the
SFS with K = 5 uses only 20% of the frames on the dev set,
its WER degrades by 2.01% absolute from 8.36% to 10.37%.
On the other hand, the Skip-RNN with M = 6 uses 37% of
the frames and still performs reasonably well on the dev set
with only 0.14% increase in WER.

The effect of varying the maximum allowable skip M of
the Skip-RNN is also shown in Table 1. As M increases, the
Skip-RNN can make larger skips, which results in reduction
of frame usage. However, the WER on the dev set does not
degrade significantly. This is because the Skip-RNN learns to
use larger skips only for long-lasting HMM states, e.g., those
representing silences. Note that the Skip-RNN with M = 6
performs the best. When M is small, the Skip-RNN processes
frames more frequently and thus needs to model the temporal
dependencies between the same HMM states as well as dif-
ferent ones. As M increases, the Skip-RNN only needs to
focus on modeling the temporal dependencies between dif-
ferent HMM states, which is an easier task. This results in
a reduced WER on the dev set. However, when M becomes
too large, it is more likely that the Skip-RNN makes excessive
skips and thus makes mistakes. Although this does not lead
to much increase in WER on the dev set, the WER on the test
set degrades due to overfitting. Surprisingly, when M = 6,
the Skip-RNN even outperforms the standard LSTM acoustic
model on the test set.

In Fig. 3 (a) and (b), we visualize how the SFS with K =
3 and Skip-RNN with M = 8 process examples from the dev
set. As shown in Fig. 3 (a), the SFS repeatedly processes
speech frames regardless of the durations of HMM states.
This not only slows down processing speed, but also makes
the SFS waste its modeling power to capture trivial temporal

f = = s s s s s's s EEEEEEEEaE s
(a) The SFS with K = 3

pis = = m o EEEEEm = & & W & & &
(b) The Skip-RNN with M = 8

Fig. 3. Skip actions taken by the Skip-RNN in comparison to
the SFS for examples from the dev dataset. In each figure, the
first row shows label changes and the second row indicates
non-skipped frames.

patterns between the same HMM states. Note that the SFS
also does not consider label boundaries, thus is more likely
to miss some of the label predictions altogether. When K is
large, this results in a large decrease in terms of accuracy. On
the other hand, Fig. 3 (b) shows that the Skip-RNN adapts the
frame skip rate dynamically, making small skips for short-
lasting HMM states and jumping large for long-lasting ones.
Utterances typically have long silences at the beginning and
end. The Skip-RNN exploits this fact and makes the maxi-
mum allowable skips over those HMM states. This leads to
great reduction in acoustic model computation while main-
taining accuracy.

5. CONCLUSION

In this paper, we consider a dynamic frame skipping strat-
egy to accelerate the processing speed of RNN-based neu-
ral acoustic models. We propose a novel RNN architecture
called Skip-RNN. The Skip-RNN is a deep LSTM-RNN with
two sub-networks that are jointly trained to learn how to clas-
sify speech frames and how many frames to skip. We show
through experiments on the Wall Street Journal corpus that it
can accelerate acoustic model computation by 2.4 times with-
out any noticeable degradation in transcription accuracy.
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