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ABSTRACT

In this paper we present a deep learning architecture for ex-
tracting word embeddings for visual speech recognition. The
embeddings summarize the information of the mouth region
that is relevant to the problem of word recognition, while
suppressing other types of variability such as speaker, pose
and illumination. The system is comprised of a spatiotem-
poral convolutional layer, a Residual Network and bidirec-
tional LSTMs and is trained on the Lipreading in-the-wild
database. We first show that the proposed architecture goes
beyond state-of-the-art on closed-set word identification, by
attaining 11.92% error rate on a vocabulary of 500 words. We
then examine the capacity of the embeddings in modelling
words unseen during training. We deploy Probabilistic Lin-
ear Discriminant Analysis (PLDA) to model the embeddings
and perform low-shot learning experiments on words unseen
during training. The experiments demonstrate that word-level
visual speech recognition is feasible even in cases where the
target words are not included in the training set.

Index Terms— Visual Speech Recognition, Lipreading,
Word Embeddings, Deep Learning, Low-shot Learning

1. INTRODUCTION

Automatic speech recognition (ASR) is witnessing a renais-
sance, which can largely be attributed to the advent of deep
learning architectures. Methods such as Connectionist Tem-
poral Classification (CTC) and attentional encoder-decoder
facilitate ASR training by eliminating the need of frame-level
senone labelling, [1] [2] while novel approaches deploying
words as recognition units are challenging the conventional
wisdom of using senones as recognition units, [3] [4] [5] [6].
In parallel, architectures and learning algorithms initially pro-
posed for audio-based ASR are combined with powerful com-
puter vision models and are finding their way to lipreading
and audiovisual ASR, [7] [8] [9] [10] [11] [12] [13].
Motivated by this recent direction in acoustic LVCSR of
considering words as recognition units, we examine the ca-
pacity of deep architectures for lipreading in extracting word
embeddings. Yet, we do not merely address word identifica-
tion with large amounts of training instances per target word;
we are also interested in assessing the generalizability of these
embeddings to words unseen during training. This property is
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crucial, since collecting several hundreds of training instances
for all the words in the dictionary is impossible.

To this end, we train and test our architecture on the
LipReading in-the-Wild database (LRW, [14]), which com-
bines several desired properties, such as relatively high num-
ber of target words (500), high number or training examples
per word (between 800 and 1000), high speaker and pose
variability, non-laboratory recording conditions (excerpts
from BBC-TV) and target words that are part of segments
of continuous speech of fixed 1.16s duration. We examine
two settings; standard closed-set word identification using
the full set of training instances per target word, and low-shot
learning where the training and test words come from disjoint
sets. For the latter setting, a PLDA model is used on the em-
bedding domain that enables us to estimate class (i.e. word)
conditional densities and evaluate likelihood ratios. Our pro-
posed architecture is an improvement of the one we recently
introduced in [15] which obtains state-of-the-art results on
LRW even without the use of word boundaries.

The rest of the paper is organized as follows. In Sect. 2
we provide a detailed description of the architecture, together
with information about the training strategy and the use of
word boundaries. In Sect. 3.1 we show results on word iden-
tification obtained when the model is training on all available
instances, while in Sect. 3.2 we present results on two low-
shot learning experiments. Finally, conclusion and directions
for future work are given in Sect. 4.

2. PROPOSED NETWORK ARCHITECTURE

In this section we describe the network we propose, together
with details regarding the preprocessing, the training strategy
and loss function.

2.1. Detailed description of the network

The proposed architecture is depicted in Fig. 1 and it is an
extension of the one we introduced in [15]. The main dif-
ferences are (a) the use of a smaller ResNet (18 rather than
34-layer) that reduces the number of parameters from ~ 24M
to ~ 17M, (b) the use of a pooling layer for aggregating in-
formation across time steps extracting a single embedding per
video, (c) the use of dropouts and batch normalization at the
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back-end, and (d) the use of word boundaries which we pass
to the backend as additional feature.

2.1.1. ResNet with spatiotemporal front-end

The frames are passed through a Residual CNN (ResNet),
which is a 18-layer convolutional network with skip connec-
tions and outputs a single 256-sized per time step, i.e. a
T x 256 tensor (I' = 29 in LRW). There are two differences
from the ImageNet 18-layer ResNet architecture, [16]; (a) the
first 2D convolutional layer has been replaced with a 3D (i.e.
spatiotemporal) convolutional layer with kernel size 5 X 7 x 7
(time x width x height) and the same holds for the first batch
normalization and max pooling layers (without reducing the
time resolution), and (b) the final average pooling layer (intro-
duced for object recognition and detection) has been replaced
with a fully connected layer, which is more adequate for face
images that are centred. The model is trained from scratch,
since pretrained models cannot be deployed due to the spa-
tiotemporal front-end.

2.1.2. Backend, embedding layer and word boundaries

The backend is composed of a two-layer BiLSTM followed
by an average pooling layer that aggregates temporal infor-
mation enabling us to extract a single 512-size representation
vector (i.e. embedding) for each video. The two-layer BilL-
STM differs from the usual stack of two BILSTM model; we
obtained significantly better results by concatenating the two
directional outputs only at the output of the second LSTMs.
The backend receives as input the collection of 256-size fea-
tures extracted by the ResNet (CNN-features) concatenated
with a binary variable indicating whether or not the frame lies
inside or outside the word boundaries. We choose to pass
the word boundaries as a feature because (a) dropping out po-
tentially useful information carried in the out-of-boundaries
frames is not in the spirit of deep learning, and (b) the gating
mechanism of LSTMs is powerful enough to make use of it
in an optimal way.

Dropouts with p = 0.30 and batch normalization are ap-
plied to the inputs of each LSTM (yet not to the recurrent
layer, see [17]), with the mask being fixed across features of
the same sequence. Finally, batch normalization is applied
to the embedding layer, together with a dropout layer with
p = 0.15, [18].

2.2. Preprocessing, loss and optimizer

The preprocessing and data augmentation are identical to
[15]. Moreover, as in [15], we start training the network us-
ing a simpler convolutional backend which we subsequently
replace with the LSTM backend, once the ResNet is properly
initialized'. Contrary to [15], we use the Adam optimizer

ICode and pretrained models in Torch7 are available at

https://github.com/tstafylakis/Lipreading-ResNet
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Fig. 1. The block-diagram of the proposed network.

[19], with initial learning rate equal to 3 x 1072 and fi-
nal equal to 1075, and we drop it by a factor of 2 when no
progress is attained for 3 consecutive epochs on the validation
set. The algorithm typically converges after 50-60 epochs.
We train the network using the cross-entropy criterion with
softmax layer over training words. This criterion serves for
both tasks we examine, i.e. closed-set word identification and
low-shot learning, while its generalizability to unseen classes
is in general equally good compared to other pairwise losses
(e.g. contrastive loss), [3] [20] [21] [22].

3. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed architec-
tures with respect to two experimental settings. The first is
the standard closed-set identification task in which the net-
work is trained with all available instances per target word
(between 800 and 1000, [14]). The second setting aims to ad-
dress to problem of word recognition on words unseen during
training. The few training instances of the target words are
merely used for estimating word-conditional densities on the
embedding domain, via PLDA. To this end, the network is
trained using a subset of 350 words of LRW and the test pairs
are drawn from the remaining 150 words.

3.1. Closed-set word identification

For our first experiments in word identification, the reduced
word set (consisting of the 350 words out of 500) will be used
for both training and testing. These networks will also be used
for low-shot learning on the remaining 150 words. Our pro-
posed networks is retrained and tested on the full 500-word
set.
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3.1.1. Baseline and state-of-the-art

We compare our architecture with two approaches which ac-
cording to our knowledge are the two best performing ap-
proaches in LRW. The first in proposed in [7], and it deploys
an encoder-decoder with temporal attention mechanism. Al-
though the architecture is designed to address the problem
of sentences-level recognition, it has also been tested on the
LRW database, after fine-tuning on the LRW training set. The
whole set of experimental results can be found in [7] and
the results on LRW are repeated here in Table 1 (denoted by
Watch-Attend-Spell). The second architecture is introduced
by our team in [15] and its differences with the proposed one
have been discussed above. The experimental results on LRW
are given in Table 1 (denoted by ResNet-LSTM). Both exper-
iment use the full set of words during training and evaluation
(i.e. 500 words).

System Top-1(%) Top-5(%)
Watch-Attend-Spell [7] 23.80 -
ResNet-LSTM [15] 17.03 3.72

Table 1. Baseline and state-of-the-art results on the full set
(500 words).

3.1.2. Experiments on the reduced set of words

For the first experiment we use the proposed architecture
without dropouts or batch normalization at the backend. The
results are given in Table 2 (denoted by N1) and the network
attains 13.13% error rate on the reduced set. For the second
experiment (denoted by N2) we add dropouts to the backend
but again we do not apply batch normalization to the embed-
ding layer. The error rate drops to 12.67%, showing the gains
by applying dropouts at the backend. The next configuration
uses both dropouts or batch normalization at the backend,
and a single BiLSTM layer (denoted by N3). The network
attains 12.59% error rate on the reduced set, showing that
good results can be obtain even with a single BiILSTM layer.
In the next configuration we experimented with extracting the
embedding from the last output of the BiLSTM (as proposed
in [23]), rather than with average pooling across all time
steps. The network attains 12.15% error rate and it is denoted
by N4. The next configuration is the proposed architecture
without the use of word boundaries. The network (denoted
by N5) attains 15.23%, showing that the network yields good
results even without specifying the boundaries of the target
words. Finally, the proposed architecture (denoted by N6)
attains 11.29% error rate on the reduced set, which is clearly
better that the other configurations examined. Moreover, by
comparing N6 with N2 we notice the strength of batch nor-
malization at the embedding layer. We should also mention
that we experimented with the typical stacking approach of
BiLSTM. In this case, the outputs of the first BILSTM are
concatenated and used as input to the second BiLSTM. The

network failed to attain good results (error rates above 20%),
despite our efforts to tune parameters such as learning rate
and dropout probabilities.

Net #L. WB DO BN EM Top-1(%) Top-5(%)
Nl 2 V A 13.13 2.26
N2 2 Vv A 12.67 2.10
N3 1 v v v A 12.59 2.05
N 2 v Vv Vv L 12.15 1.89
N5 2 v v A 15.23 2.87
N6 2 Vv Vv Vv A 11.29 1.74

Table 2. Results on the reduced set (350 words) for vari-
ous network configurations. Abbreviations: #L: number of
BLSTM layers, WB: use of word boundaries, DO: use of
dropouts at the backend, BN: use of batch normalization at the
embedding, EM: embedding extracted using average pooling
(A) or from last time step (L).

3.1.3. Experiments on the full set of words

The networks N5 and N6 are retrained from scratch and
scored on the full set, and their performance is given in Table
3. Compared to the current state-of-the-art we observe an
absolute improvement equal to 5.11% using about 2/3 of the
parameters. The LSTM is indeed capable of learning how to
use the word boundaries, without having to drop out out-of-
boundaries frames or to apply frame masking. Even without
word boundaries though, our new architecture yields 1.36%
absolute improvement over [15]. Finally, our architecture
halves the error rates attained by the baseline (attentional
encoder-decoder, [7]).

Net #L. WB DO BN EM Top-1(%) Top-5(%)
N5 2 v v A 1567 3.04
N6 2 Vv v v A 1192 1.94

Table 3. Results on the full set (500 words) for various net-
work configurations. Abbreviations same as in Table 2.

3.2. Low-shot learning experiments

In this set of experiments we assess the capacity of the em-
beddings in generalizing to words unseen during training. To
this end, we assume few instances for each of the 150 unseen
words. These words are not included in the training set of the
architecture (which is composed of 350 words) and they are
merely deployed to estimate shallow word-dependent models
on the embedding space. We design two experiments, namely
closed-set identification and word matching.

3.2.1. PLDA modeling of embeddings

We model the embeddings using PLDA, [24]. We train a
PLDA model with expectation-maximization on the set of
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350 words, drawn from the test set of LRW (50 instances per
word, i.e. 17500 training instances). PLDA is chosen due to
its probabilistic nature, which enables us to form likelihood
ratios, that are extensively used in biometric tasks, such as
speaker and face verification, [25] [26] [27]. Its parameters
are defined by P = (u, V,X), where p the mean value, V a
matrix that models the word subspace and X a full symmetric
positive definite matrix modelling the within-class variability.
The PLDA generative model is the following

where x; is an embedding in R%< belonging to class ¢;, y. ~
N(0,1) is a random vector in R% shared by all instances of
the same class, ¢; ~ N (0, X)) is a random vector in R and
dx > dy. In the following experiments we use dy = 512 and
dy = 200.

3.2.2. Closed-set identification on unseen words

We are interested in examining the performance of the em-
beddings in closed-set identification on the unseen set of
words. To this end, the embeddings of the 150 unseen words
are extracted. The overall number of available embeddings
per word is 50 from the LRW validation set and another
50 from the test set. The validation set serves to estimate
class-conditional density functions, based on the PLDA pa-
rameters, i.e. p(-l¢,P) = p(-|{xXi}te,=c, P), where c the
class (i.e. word) label, {x;}.,—. a set of instances from the
validation set from class c.

A class conditional density for each word ¢ given P is
estimated using variable number of instances per word N,
(from 1 to 16) drawn from the validation set of LRW. Subse-
quently, the models are evaluated on test embeddings (50 per
word, from LRW test set) and the estimated word is derived
using maximum likelihood. The Top-1 error rates for several
number of training instances per word N, are given in Table
4 (denoted by ID-W350). For comparison, we include results
where the embeddings are extracted from the network trained
with the full set of 500 words (denoted by ID-W500), i.e. the
one used in Sect. 3.1.3.

3.2.3. Word matching on unseen words

For the final experiment, we evaluate log likelihood ratios
(LLRs) between the hypotheses (a) the word instance x be-
longs to the same word-class ¢ with a collection of word in-
stances {X; }.,=., and (b) x and {x; }.,—. belong to different
classes. Contrary to closed-set identification, we assume that
each instance may belong to an unknown set of classes. More-
over, since we are scoring pairs of word models and instances,
more than one model per word can be created. We use again
the validation set of LRW to create these models and the test
set to create test instances. We measure the performance in

terms of Equal Error Rate (EER), defined as the error rate at-
tained when the LLRs are thresholded in such a way so that
Missed Detection and False Alarm rates are equal. The re-
sults using variable number of training instances per model
N, is given in Table 4 (denoted by EER-W350). For compar-
ison, results with embeddings extracted from the same net-
work trained on the full set of words are also given (denoted
by EER-W500).

N, 1 2 4 8 16
ID-W350 (%) 43.8 325 23.7 19.2 173
ID-W500 (%) 34.3 23.0 16.6 13.1 119

EER-W350 (%) 6.11 4.22 3.31 3.16 3.03
EER-W500 (%) 4.52 3.01 249 228 221

Table 4. Top-1 identification error and equal error rates on
the unseen set of 150 words using PLDA for various training
embeddings per word. W350 indicates that the network is
trained on the reduced set while W500 on the full set.

Overall, the experiment on low-shot learning demonstrate
the generalizability of the proposed architecture. Even with a
modest number of training words (i.e. 350), the architecture
succeeds in learning how to break down word instances into
their “visemic” content and in extracting embeddings with
good word discriminative properties.

4. CONCLUSION

In this paper, we proposed a deep learning architecture for
lipreading that is capable of attaining performance beyond
state-of-the-art in the challenging LRW database. The ar-
chitecture combines spatiotemporal convolution, ResNets and
LSTMs and an average pooling layer from which word em-
beddings are extracted. We explored several configurations
of the LSTM-based back-end and we proposed an efficient
method of using the word boundaries. We also attempted to
address the problem of low-shot learning. To this end, we re-
trained the network on a subset of words (350 out of 500) and
tested it on the remaining 150 words, using PLDA modelling.
The experiments on low-shot learning show that good results
can be attained even for words unseen during training.

For future work, we will train and test our architecture on
the LipReading Sentences in-the-wild database ([7]) and we
will experiment with word embeddings for large vocabulary
visual speech recognition, using words as recognition units.
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