
SAMPLED CONNECTIONIST TEMPORAL CLASSIFICATION

Ehsan Variani1, Tom Bagby1, Kamel Lahouel2, Erik McDermott1, Michiel Bacchiani1

1Google Inc., USA
2Johns Hopkins Univ., Baltimore, MD USA

{variani,tombagby,erikmcd,michiel}@google.com klahoue1@jhu.edu

ABSTRACT

This article introduces and evaluates Sampled Connectionist
Temporal Classification (CTC) which connects the CTC criterion to
the Cross Entropy (CE) objective through sampling. Instead of com-
puting the logarithm of the sum of the alignment path likelihoods, at
each training step the sampled CTC only computes the CE loss be-
tween the sampled alignment path and model posteriors. It is shown
that the sampled CTC objective is an unbiased estimator of an upper
bound for the CTC loss, thus minimization of the sampled CTC is
equivalent to the minimization of the upper bound of the CTC ob-
jective. The definition of the sampled CTC objective has the advan-
tage that it is scalable computationally to the massive datasets using
accelerated computation machines. The sampled CTC is compared
with CTC in two large-scale speech recognition tasks and it is shown
that sampled CTC can achieve similar WER performance of the best
CTC baseline in about one fourth of the training time of the CTC
baseline.

Index Terms— Deep Neural Networks, CTC, Cross Entropy,
Sampling.

1. INTRODUCTION

Connectionist Temporal Classification (CTC) [1] is a sequence train-
ing criterion defined as the posterior of observation sequence given
feature sequence. The criterion is computed by marginalizing the
posterior of all possible alignments which contain an additional
blank symbol in between ground truth label sequence. To deal with
the exponential number of possible alignments, the summation is
performed via forward-backward algorithm [2]. When integrated
with deep architectures, CTC imposes specific memory and compu-
tation requirements which can be a bottleneck for training scalabil-
ity on accelerated machines like Graphics Processing Units (GPUs)
[3, 4].

In speech recognition, CTC loss often deployed for training deep
Recurrent Neural Networks (RNNs) with Long Short Term Memory
(LSTM) cells [5, 6, 7, 8, 9] or Gated Recurrent Units (GRUs) [10, 3].
Training RNN with a sequence losses like CTC requires full un-
rolling of RNN by input sequence length which imposes extra mem-
ory requirements and limits the scalability of training parallelization
on GPUs through batching [4, 11]. For practical speech recognition
systems, the training corpus usually contains utterances with vari-
able length which makes parallel training with multiple sequences
in a minibatch inefficient both in terms of memory consumption
and computation. Furthermore, the forward-backward algorithm has
O(N2T) computation and memory complexity [2] where T and N
are the length of input sequence and number of softmax classes, re-
spectively. For large scale Automatic Speech Recognition (ASR)

0

1<blank>/5

2

c/17
3

c/5

c/5

4<blank>/5

5

t/7

6

<blank>/1

7

t/4

<blank>/1

t/4
t/4

8
<blank>/3

9

t/1

t/1

10
<blank>/1

11
c/2

<blank>/1

c/2

12

c/1

c/1
c/1

13
<blank>/1

Fig. 1. The path inventory graph for ground truth alignment |c t
t t c|. There is total of 22 alignment paths in this graph. Each
path is corresponding to an alignment which outputs the ground truth
labels within at most one frame of the alignment boundaries. The
edge’s weight is the total number of alignment paths starting from
that edge which ends in one of the final states. The dashed red path
is a sample path uniformly selected based on the count distributions.

systems, the number of classes is order of thousands and average ut-
terance length is of the order of hundreds. These computation and
memory constraints significantly add to the complexity of training
a RNN architecture with time back-propagation. To overcome the
computation complexity of CTC, the general practise is either effi-
cient machine specific implementation of the forward-backward al-
gorithm [3, 12, 13] or implementation of some approximation of the
CTC objective [4]. However, the CTC loss computation is still com-
putationally much more expensive than frame-level objectives like
Cross Entropy (CE) which can be easily scaled using truncated un-
rolling and large batches on GPUs [11].

This paper connects the sequence-level CTC criterion to the
frame-level CE training through sampling. Instead of computing
CTC loss by summing over all possible alignments containing blank
symbol, we investigate relabeling an input sequence by a label se-
quence randomly chosen from all possible alignments allowed by
the alignment inventory. Given the chosen alignment, the CE loss
between softmax posteriors and selected alignment as well as back-
ward gradients are computed to update the deep architecture weights.
The mathematical connection of the proposed objective and CTC
loss is explained. Two sampling methods are presented for con-
structing a uniform alignment path inventory given the ground truth
alignment. Finally, the proposed method is experimentally evaluated
in two Large Vocabulary Continuous Speech Recognition (LVCSR)
tasks. It is shown that the sampled CTC method allow scalability of
training time while preserving similar quality performance yield by
training with CTC objective.

4959978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

2. SAMPLED CTC

2.1. Connectionist Temporal Classification (CTC)

For an acoustic feature sequence x̄ = x1, ..., xT and word transcript
w̄ = w1, ..., wM , the CTC criterion is defined as

LCTC (θ, w̄, x̄) := − log

(∑
s̄∈Sw̄

pθ(s̄|x̄)

)

= − log

(∑
s̄∈Sw̄

T∏
t=1

pθ(st|xt)

)
(1)

where θ denotes the model parameters, Sw̄ is the path inventory
containing all the alignment paths like s̄ = s1, ..., sT allowed by
the CTC topology. Here st for each time step t can be either a
class symbol or a blank symbol. For a given alignment, a valid
path in the CTC topology is a path with edit distance of 0 to the
ground truth label sequence after removal of all the blank symbols
and consecutive repetitions. For example, if the sequence of sym-
bols from ground truth alignment is |c t t t c|, the result-
ing CTC path inventory should encodes all the paths with the fol-
lowing pattern: |<blank>∗ c+ <blank>∗ t+ <blank>∗
c+| where <blank> denotes the blank symbol, ∗means 0 or more
repetitions, and + means 1 or more repetitions.

The CTC objective is usually computed using Finite State Trans-
ducers (FSTs) by composition of a score transducer S and label
transducer L [6]. The score transducer encodes state st and its pos-
terior p(st|xt) for each time step t. The label transducer encodes
all possible paths allowed by the CTC topology. It is built by com-
position of the string transducer for the ground truth alignment with
a transducer which converts ground truth alignment to sequence of
states with repetitions interleaved with optionally blank symbols.
Figure 1 shows a path inventory representation of L when ground
truth alignment is |c t t t c|. The forward loss and backward
gradient computation is performed using shortest path algorithm on
S ◦ L fst.

The CTC topology imposes no alignment constraints on the
paths, which in turn enables any state symbol to occur at anytime.
It is likely that the spiky posteriors occur towards the end of the ut-
terance which is not desirable feature for practical streaming recog-
nition systems like voice-search [7]. To fulfill the streaming require-
ments, instead of building an unconstrained label transducer which
encodes all possible paths allowed by the CTC topology, a con-
strained transducer is built which limits the valid paths to those in
which the delay between the CTC labels and the ground truth align-
ment does not exceed some threshold. For example, the label path
inventory of Figure 1 allows delay threshold of 1 which let the paths
|<blank> c t t c| or |c t <blank> c <blank>| be
permitted while not allowing paths like |<blank> <blank>
<blank> c t c|.

2.2. Sampled CTC

The CTC objective of Eq 1 can be bounded by expected value of the
path log-likelihoods under some prior knowledge of the paths distri-
bution. Assuming the alignment paths in the state inventory Sw̄ be
distributed by a distribution q (s̄) which assigns non zero distribution
mass to each alignment path s̄ in the path inventory Sw̄:

LCTC (θ, w̄, x̄) = − log

(∑
s̄∈Sw̄

pθ(s̄|x̄)

q (s̄)
q (s̄)

)

≤ −
∑
s̄∈Sw̄

q (s̄) log

(
pθ(s̄|x̄)

q (s̄)

)

= Es̄

[
− log

(
pθ (̄s|x̄)

q (̄s)

)]
(2)

where the inequality holds due to the Jensen’s inequality [14]. In the
final equation, p(̄s|x̄) is a random variable which is a function of
the paths random variable s̄ distributed by q (̄s). The above equation
provides an upper bound for the CTC objective which means instead
of minimizing the CTC criterion directly, one can minimize the up-
per bound expected log-likelihood. Furthermore, we argue that min-
imization of the above expected value is equal to minimization of the
log-likelihood directly. Let us define the following objective func-
tion:

L (θ, s̄, w̄, x̄) = − log (pθ (̄s|x̄)/q (̄s)) (3)

For some acoustic feature sequence x̄ and corresponding word se-
quence w̄, the update rule for the gradient descent optimization of
the above log-likelihood loss at step n is:

θn+1 = θn − γ
∂

∂θ
L (θ, s̄, w̄, x̄) (4)

where γ is the learning rate. Taking expected value of the above
equation with respect to the path random variable s̄:

Es̄ [θn+1] = Es̄

[
θn − γ

∂

∂θ
L (θ, s̄, w̄, x̄)

]
= θn − γEs̄

[
∂

∂θ
L (θ, s̄, w̄, x̄)

]
= θn − γ

∂

∂θ
Es̄ [L (θ, s̄, w̄, x̄)]

(5)

where the first equality is due to the fact that uniform distribution
over paths does not depend on the model parameters θ and the sec-
ond equality holds since the expected value and partial derivative
operation are interchangeable. In fact, the expected value in this sit-
uation is just a sum over a finite set. Hence, the derivative of path
log-likelihood is an unbiased estimator of the derivative of expected
value of path log-likelihood. The final right hand side equation is the
update rule of model trained with Es̄

[
− log

(
pθ(s̄|x̄)
q(s̄)

)]
objective at

step n assuming initialized from same model parameter θn. Thus
model optimized with the path log-likelihood objective of Eq 3 is
unbiased estimator of the upper bound of the CTC criterion in Eq 2.

We notate the criterion of Eq 3 as sampled CTC objectives. In
lack of prior knowledge about the distribution of the paths inventory,
we can assume all the paths are equally likely. In addition, assuming
conditional independence like CTC in Eq 1, the sampled CTC loss
becomes:

L (θ, s̄, w̄, x̄) |̄s ∼ U(S) = −
T∑
t=1

log (pθ (st|xt)) (6)

which is the cross entropy objective between model posterior and
sampled alignment with additional blank symbol class. The training

4960

process works as follow. For each utterance with given ground truth
alignment, the alignment path inventory Sw̄ is first built. According
to the construction, the path inventory can be distributed under some
prior distribution q (Sw̄). At each training step, the input sequence is
relabeled by an alignment path randomly chosen from Sw̄ according
to prior q (Sw̄). Training proceeds by computing the forward cross
entropy object between model posteriors and the randomly selected
alignment. Note that an utterance can be labeled with different align-
ment paths as training continues.

The choice of uniform prior distribution over paths inventory is
not necessarily the most desirable option. It is clear that as training
proceeds, the alignments distribution is changing and model might
prefers some alignments over others; indeed if q (s̄) be proportional
to pθ(s̄|x̄) for all s̄ ∈ Sw̄, the equality in Eq 2 holds. Since the
main objective of the sampled CTC method is acquiring computa-
tion efficiency over the forward-backward algorithm, the uniform
distribution is a suitable choice to parallelize the training procedure.
This allows Sampled CTC objective be computed without construc-
tion of the S◦L transducer or forward-backward computation on the
full sequence posteriors. As shown later, the sampled CTC can be
optimized by full unrolling as well as truncated unrolling with large
batches which can significantly speed up training. Next we present
two ways of constructing a uniform path inventory.
Coin Flipping: Given the ground truth alignment sequence of length
T , at each time position t, the path inventory is constructed by flip-
ping an unbiased coin. According to the flip outcome, the ground
truth alignment is either kept as is or changed to a blank symbol.
Since the coin is unbiased, this simple algorithm constructs an align-
ment path inventory of size 2T where all the paths are equally likely.
The path inventory constructed with Coin Flipping is larger than
the path inventory of the CTC topology. Unlike CTC path inven-
tory, there is no pattern imposed for valid alignment paths. For the
ground truth alignment of |c t t t c|, the Coin Flipping in-
ventory allows alignments like |c <blank> c t c| or |c t
<blank> t c| which are not allowed by the CTC topology. The
Coin Flipping however is so simple and does not even require to be
constructed in advance since the random path can be selected on-
the-fly.
Path Counting: Here the path inventory is constructed exactly sim-
ilar to the CTC path inventory. Figure 1 presents the path inventory
for the ground truth alignment of |c t t t c|. For each edge in
this graph, the total number of paths started from the edge and ends
in one of the final states is counted and assigned to the edge’s weight.
For example in Figure 1 there is total of 17 paths starting from edge
{0 → 2} and there are only 4 paths containing edge {4 → 6}
which started from state 4. To uniformly sample a path from this
path inventory, starting from start state 0 we select next edge accord-
ing to the distribution of the edge’s weights which corresponds to
the total paths leaving from current state. The path extends by the
randomly chosen edge and this process continues until the alignment
path reaches one of the final states.

Figure 1 shows a sample path with red dashed edges. At state
0, the possibility of choosing edge {0 → 1} or edge {0 → 2}
is distributed with { 5

22
, 17

22
}. The randomly selected edge in this

example is the edge {0 → 2}. The path grows by making another
random selection among the three possible edges {2 → 3}, {2 →
4}, {2 → 5} which are distributed by { 5

17
, 5

17
, 7

17
}. This process

continues until reaching one of the two final states which is state
13 in this example. The selected path in this example is: {0 →
2}{2 → 4}{4 → 7}{7 → 11}{11 → 13} which is corresponding
to |c <blank> t c <blank>| alignment. The probability of
this path is: 17

22
× 5

17
× 4

5
× 2

4
× 1

2
which is 1/22.

3. EXPERIMENTS

The main advantage of the sampled CTC over CTC is argued to be
the computation scalability. Unlike CTC objective, the sampled CTC
criterion does not necessarily require full unrolling of the recurrent
architecture and can be optimized with truncated unrolling and large
batches. The experiments are conducted to evaluate the performance
of the proposed sampled CTC methods in both full and truncated
unrolling setting. Different training processes are compared in terms
of the WER performance and computation efficiency.

Data: The training data consists of about 20, 000 hours of spon-
taneous speech from anonymized, human-transcribed Voice Search
queries. For noise robustness training, each utterance in the training
set is artificially noisified using 100 different styles of noises with
varying degrees of noise and reverberation. The test sets are sepa-
rate anonymized, human-transcribed Voice Search datasets of about
25 hours each. Evaluation is presented on two sets, voice-search
which contains short queries from real Google voice search traffic
and dictation, which contains relatively longer queries. The average
number of frames after endpointing is 114 with standard deviation
of 296. The dataset is forced-aligned with state inventory of 8192
states.

Front-end: The training examples are 512-dimensional frames out-
put by the front end every 30 ms, generated by stacking four frames
of 128-dimensional log mel filterbank energies extracted from a 32
ms window shifted over the audio samples in 10 ms increments [15].
Each frame is labeled with one out of 8192 context-dependent out-
put phoneme states. The feature extraction was performed on-the-fly
as explained in [11]. Same front-end was used for all experiments
presented here.

Training: For all experiments, a stack of 5 LSTM layers with 768
cells per layer is used which lead to model of 22M parameters.
ASGD was used for all experiments. The CPU training was per-
formed with 500 worker and 99 parameter server machines. The
GPU experiments used 32 K40 GPUs with 7 parameter servers. The
number of machines were optimized for each task to achieve the
highest number of training steps per second while reaching the best
WER performance. Same model topology has been used for all ex-
periments. The training was conducted in TensorFlow [16] using the
system described in [11]. All models are decoded with a two-pass
WFST-based decoder. The decoding resources for the CTC model
was used for decoding the sampled CTC models. The lm weight and
blank scale were optimized separately for each model.

Baseline: Our best CTC setup is trained with full unrolling and batch
size of 1 on CPU. The learning rate of 1.5e− 4 with exponential de-
cay rate of 0.9 and decay step of 1e + 9 was used for optimization.
The WER performance of this setup on the voice-search and dicta-
tion tasks are shown in Table 1. The model is trained for 60 epochs
with approximately 1 epoch per day. The performance seems get-
ting better and better as training proceeds however it is relatively
slow. Training can be speed up using batching and full unrolling on
GPU, however none of our experimental setups were performing as
good as the batch one setup of Table 1. We observed batching of the
full unrolling setup with CTC loss is very sensitive on the batching
parameters. The training data used here varies largely in terms of
the utterance length which makes it hard to find the optimum batch-
ing parameters which improves training time while not hurting WER
performance.

4961

WER
[

%
]

epoch 10 epoch 20 epoch 30 epoch 60
voice-search 10.6 10.3 10.0 9.6

dictation 9.2 8.7 8.5 8.0
training

[
days

]
10 20 31 60

Table 1. WER for the baseline CTC system trained for 60 epochs.

Sampled CTC: This experiment compares CTC and sampled CTC
when all the training parameters are identical. The exact CPU CTC
setup with full unrolling and batch size of 1 was used here. The
optimization parameters like learning rate and exponential decay pa-
rameters are all set as in the baseline CTC setup. Table 2 compares
the performance of CTC and sampled CTC at epoch 10. Both sam-
pling CTC approaches are performing relatively close to the baseline
CTC, though the Coin Flipping method seems little behind the CTC
baseline. But more than WER performance, maybe the most promis-
ing observation in Table 2 is that even for full unrolling, the training
time of sampled CTC is about half of the CTC training time. The
CTC criterion needs to perform forward-backward at each step to
calculate loss and backward derivatives while the sampled CTC is as
cheap as CE training at each step.

WER
[

%
]

CTC sampling CTC
Coin Flipping Path Counting

voice-search 10.6 11.0 10.6
dictation 9.2 9.8 9.4

training
[
days

]
10 6 6

Table 2. CTC vs. sampled CTC at epoch 10 (full unrolling).

Truncated Unrolling: One of the main advantages of the sampled
CTC over CTC is that the sampled CTC can be trained with trun-
cated unrolling and large batches. To examine the behavior of the
Sampled CTC in truncated unrolling setup, the both proposed meth-
ods were compared on GPU setup with the batch size of 256 and
unrolling window of 20 frames. All setups use same initial learning
rate and optimization parameters.

Table 3 presents the performance of Coin Flipping model. As
training proceeds, the gap between sampled CTC with Coin Flipping
the best CTC baseline performances in Table 1 is getting smaller
and smaller but the Coin Flipping is lagging behind the baseline
CTC even after 40 epochs of training. Another observation is that
while training with truncated unrolling is faster in terms of number
of epochs per day compared to the full unrolling training of Table 2,
the performance of the full unrolling setup at epoch 10 is better than
the performance of truncated setup at same epoch. So part of the dif-
ferences between sampled CTC performance and CTC performance
in terms of number of training epochs might be just because of the
differences between full unrolling and truncated unrolling.

Table 4 presents the WER performance as well as training time
of the sampled CTC with Path Counting approach with truncated un-
rolling. The batch size and unrolling window of the previous exper-
iment has been used here. The Counting Path methods at epoch 160
of truncated unrolling matching the performance of the CTC setup
at epoch 60 in Table 1. The training time for the sampled CTC to
reach the same performance of the CTC baseline is about one fourth
of the training time of the CTC model. Similar to the Coin Flipping

WER
[

%
]

epoch 10 epoch 20 epoch 40
voice-search 11.5 11.8 10.9

dictation 10.4 10.0 9.3
training

[
days

]
1.5 3.6 7.2

Table 3. Sampled CTC with Coin Flipping (truncated unrolling).

experiment, the Path Counting with truncated unrolling at epoch 10
performs worst than same epoch with full unrolling in Table 2.

The fact that sampled CTC can be trained with truncated un-
rolling and large batches and achieve similar performance of the
CTC model is very promising because all the new advances of the
accelerated machines can be applied to further expedite training. For
example the NVIDIA cuDNN LSTM is already two times faster than
the tf.LSTMCell used in this experiments. From the hardware
perspectives, our benchmarks show that the latest GPUs like the
P100 GPUs are about two times faster than the K40 GPUs to train
the LSTM topology used in this paper. The hardware and software
advances further reduce the total training time of the sampled CTC
to about less than three days.

WER
[

%
]

epoch 10 epoch 20 epoch 40 epoch 160
voice-search 11.4 10.9 10.4 9.6

dictation 9.9 9.0 8.4 7.5
training

[
days

]
1.5 3.6 7.2 14

Table 4. Sampled CTC with Path Counting (truncated unrolling).

Posterior Spikiness: The CTC posteriors are observed to be very
spiky since the model prefers output blank symbol most of the time.
To measure spikiness of the CTC models, the usual practise is plot-
ting the posteriors for a holdout utterance as in [6]. To compare the
spikiness of the sampled CTC and CTC, we computed the average
of blank posteriors over whole training corpus. The average of blank
posteriors for CTC model is 89%, while this value is 76% and 68%
for the sampled CTC with Path Counting and Coin Flipping, respec-
tively. This comparison suggests that the sampled CTC models are
not as as sharp as the CTC model.

4. CONCLUSIONS

This paper presented and evaluated sampled CTC as an upper bound
approximation of the CTC objective. The sampled CTC connects the
CTC constraint to the CE objective through sampling. Two sampling
methods were described for which both methods assigns uniform
distribution over all possible sample alignments. Theses models are
compared mathematically and empirically. The main advantage of
the proposed method over CTC was argued to be the computation
scalability. Unlike CTC, sampled CTC is a frame-level criterion
which allows scalability of training with fixed unrolling and large
batches. The sampled CTC was compared with CTC in different
setups and it was shown that sampled CTC can achieve the CTC
performance quality in significantly shorter training time.

Acknowledgments

The authors would like to thank all members of the Google speech
team particularly Matt Shannon and Khe Chai Sim for very useful
discussions.

4962

5. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist temporal classification: la-
belling unsegmented sequence data with recurrent neural net-
works,” in Proceedings of the 23rd international conference
on Machine learning. ACM, 2006, pp. 369–376.

[2] Lawrence R Rabiner, “A tutorial on hidden markov models
and selected applications in speech recognition,” Proceedings
of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and man-
darin,” in International Conference on Machine Learning,
2016, pp. 173–182.

[4] Kyuyeon Hwang and Wonyong Sung, “Sequence to sequence
training of ctc-rnns with partial windowing,” in International
Conference on Machine Learning, 2016, pp. 2178–2187.

[5] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[6] Haşim Sak, Andrew Senior, Kanishka Rao, Ozan Irsoy, Alex
Graves, Françoise Beaufays, and Johan Schalkwyk, “Learning
acoustic frame labeling for speech recognition with recurrent
neural networks,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 4280–4284.

[7] Haşim Sak, Félix de Chaumont Quitry, Tara Sainath, Kanishka
Rao, et al., “Acoustic modelling with cd-ctc-smbr lstm rnns,”
in Automatic Speech Recognition and Understanding (ASRU),
2015 IEEE Workshop on. IEEE, 2015, pp. 604–609.

[8] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise
Beaufays, “Fast and accurate recurrent neural network
acoustic models for speech recognition,” arXiv preprint
arXiv:1507.06947, 2015.

[9] Kanishka Rao, Andrew Senior, and Haşim Sak, “Flat start
training of cd-ctc-smbr lstm rnn acoustic models,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2016 IEEE In-
ternational Conference on. IEEE, 2016, pp. 5405–5409.

[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[11] Ehsan Variani, Tom Bagby, Erik McDermott, and Michiel Bac-
chiani, “End-to-end training of acoustic models for large vo-
cabulary continuous speech recognition with tensorflow,” Proc.
Interspeech 2017, pp. 1641–1645, 2017.

[12] Albert Zeyer, Eugen Beck, Ralf Schlüter, and Hermann Ney,
“Ctc in the context of generalized full-sum hmm training,”
Proc. Interspeech 2017, pp. 944–948, 2017.

[13] Khe Chai Sim and Arun Narayanan, “An efficient phone n-
gram forward-backward computation using dense matrix mul-
tiplication,” Proc. Interspeech 2017, pp. 1646–1650, 2017.

[14] Johan Ludwig William Valdemar Jensen, “Sur les fonctions
convexes et les inégalités entre les valeurs moyennes,” Acta
mathematica, vol. 30, no. 1, pp. 175–193, 1906.

[15] Golan Pundak and Tara N Sainath, “Lower frame rate neural
network acoustic models,” Interspeech 2016, pp. 22–26, 2016.

[16] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

4963

