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ABSTRACT

Being affected by mental stress during conversations might have a
direct or indirect effect on our speech acoustics as well as on our
physiological responses. This paper presents a study on finding
the relationship between these two modalities, speech acoustics and
physiology, during stressful conversations between humans. Heart
rate and respiratory sinus arrhythmia have been considered as physi-
ological variables in the present study. Two datasets, one from stress
induction sessions and the other one from in-lab discussions of re-
lationship conflicts between couples, have been analyzed. A series
of experiments have been performed separately on the two datasets,
as well as on the combined dataset. The research finds acoustic fea-
tures that are significantly correlated with the physiological variables
during stressful conversations. It also predicts the physiological sig-
nals from speech features through a nonlinear regression analysis.
The results take us one step forward towards building an extremely
non-intrusive and relatively inexpensive method of predicting physi-
ological responses from speech, and thus detecting the presence and
quantifying the intensity of stress during stressful conversations.

Index Terms— Stress, speech, acoustics, physiology, heart rate,
respiratory sinus arrhythmia

1. INTRODUCTION

Excessive stress can lead to a variety of physiological, psycho-
logical, and psychosomatic health conditions such as anxiety and de-
pression [1], lack of proper physiological functioning causing degra-
dation in performance, and even cardiovascular and cerebral diseases
[2]. Automatic detection of stress can be very useful as it can warn
the user and even help reduce stress-related health problems in the
long run. It can also be helpful to psychologists during observational
therapy as a diagnostic tool.

Effects of mental stress on physiology: Stress has a lot of
short- and long-term effects on our physiology even though it has
a psychological origin. Taelman ez. al. [3] found significant change
in Heart Rate (HR) and Heart Rate Variability (HRV) due to mental
stress, which indicated strong potential for measuring stress levels
from these signals. In [4], the authors studied the effect of stress
originating from overcommitment and effort-reward imbalance at
work on HR, blood pressure and vagal tone [4]. They discovered
increased HR reactivity, increased systolic blood pressure and de-
creased vagal tone during stressful work. The relationship between
stress and the respiratory pattern has also been studied quite thor-
oughly in the past [5, 6]. Sues et. al. [6] reported the occurrence of
hyperventilation or over-breathing due to stress. Grossman [5] de-
scribed the effect of respiration associated with stress responses on
cardiovascular dysfunction. Porges [7] showed how Respiratory Si-
nus Arrhythmia (RSA), which is defined as the periodical alteration
of heart rate in association with the phase of respiration [5], can be
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utilized as a technique to asses stress and vulnerability to stress.

Stress detection from physiology: The effect of mental stress
on physiology has inspired a lot of researchers to build automated
systems to detect stress by measuring physiological signals. For
example, Healey and Picard [8] described methods to detect stress
from direct measurement and analysis of different physiological sig-
nals like electrocardiogram, Electrodermal Activity (EDA) and res-
piration. Researchers of [9] utilized EDA for discriminating be-
tween stress and cognitive load in office environment. Choi and
Gutierrez-Osuna [10] estimated the level of activation of sympa-
thetic and parasympathetic nervous systems by analyzing HRV to
detect the presence of stressful events.

Stress detection from speech: Although these methods provide
quite satisfactory accuracy for stress detection, they need intrusive
and in some cases invasive methods to acquire the physiological sig-
nals. This inspired the speech scientists to harness the prosodic and
emotional cues of speech to predict stress [12]. A hefty amount of
work has been done in this field using the SUSAS dataset [13]. The
nonlinear Teager Energy Operator (TEO) [13] on acoustic features
was found to be useful for detecting stress. A classification exper-
iment was performed in [14] for detecting stress from speech for
drivers engaged with cognitive load. [15] also did stress classifica-
tion experiments from both speech and galvanic skin response. A
Gaussian Mixture Model (GMM) based framework was proposed in
[16] to detect stress in speech under physical load. Lu ez. al. [17]
built a system for detecting stress in varying acoustics environments
using smartphones.

Relationship between speech and physiology: As we saw the
previous examples, the speech and physiology modalities have been
well studied and employed to detect mental stress. Another interest-
ing area of research is to explore the relationship between these two
modalities. Predicting physiological responses from speech acous-
tics during stressful conversations can give some insight on how a
psychological variable (the reason of stress) can lead to both physi-
ological and vocal activations, and how these two are related.

Finding acoustic features that are related to physiological sig-
nals can also help in the development of a multi-modal stress detec-
tion systems. Moreover, estimating the raw values of physiological
signals can provide higher resolution quantitative metrics for the in-
tensity of stress as opposed to just detection of the presence of stress.

However, to the best of our knowledge, only a few attempts have
been made in the past to tackle the problem of predicting physiolog-
ical signals only from audio. [18] tried to predict HR from pronun-
ciation of vowels. Schuller and his colleagues [19] analyzed correla-
tion, regression and classification results for the tasks of vowel pro-
nunciation and reading out a sentence loud with and without physical
load. A recent study [20] tried to classify change in the direction of
HR from acoustic features for conversation with an artificial dialog
system. Their newer study [21] proposed a regression analysis to
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Table 1. Datasets
Name #Sessions #Males #Females Total duration

SI 54 29 25 6.20 hours
CI 226 1157 1117 22.30 hours

predict HR values from audio using the same corpus.

Present study: The present study investigates the relationship
between acoustic features and physiological signals (HR and RSA)
in terms of correlation and regression analyses for spontaneous
stressful conversations between humans in two separate datasets.
The main novelties and importance of this paper are the followings:
i) To the best of our knowledge, this is the first ever attempt to
explore the relationship between the two aforementioned modal-
ities for conversations between humans; ii) and the first study to
predict RSA from speech, and identify the acoustic features that
facilitate that prediction; iii) The proposed work employs two very
distinct datasets and thus addresses issues related to robustness of
the acoustic features across different domains; iv) and our work
provides regression analysis on the actual value of the physiological
signals thus better addresses the strengths and limitations of the
physiological-speech connection during unconstrained, fluent and
real conversations. This could in turn elucidate the possibility of
building an audio-based automated real-time stress or physiology
monitoring system [19].

2. DATASETS
Two different datasets, Stress Induction (SI) and Couples’ Inter-
action (CI), have been utilized for the present analysis. The sum-
mary of the two datasets are reported in Table 1. Note that the ‘total
duration’ field tabulates total audio duration of all sessions before
performing any preprocessing.

2.1. Stress Induction (SI) dataset

The original dataset [22] was collected from 98 young adults
who re-experienced their top two stressors (or stressful events in life)
in a semi-structured Social Competence Interview [22]. HR, RSA,
blood pressure and some other physiological measures had been col-
lected along with speech. Baseline [22] or resting physiological re-
sponses of all the participants had also been collected. We use only
the re-experience part of the interview (around 4-6 minutes per stres-
sor) for this study. We denote one session as a combination of the
two re-experience parts from two stressors. So, the average dura-
tion of each session is around 8-12 minutes. We work on a subset
of the original dataset. Our dataset has 54 sessions. All the sessions
have manual transcriptions of speech, that we utilize to extract par-
ticipant’s speech from a dyadic conversation between participant and
interviewer as described in Section 3.1. For every session, average
values of HR and RSA over the entire session have been used in the
present analysis. More details about the study and data can be found
in [22].

2.2. Couples’ Interaction (CI) dataset

Sixty married, community couples were recruited in Salt Lake
City, UT for participation in a study of communication and emotion
in marriage. The recruitment inclusion criteria included: the cou-
ples being legally married for at least one year and living together,
both spouses speaking fluent English, and being between the ages
of 18 and 60. Recruited couples were married for a mean of 10.0
years (SD = 7.60) at the beginning of the study. The mean age of
the recruited wives was 41.6 years (SD = 8.59), and the mean age

TNumber of unique males/females = 60.
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of the husbands was 43.5 years (SD = 8.74). The mean number of
years of education was 17.0 for both the wives and husbands (SD =
3.23 for wives, SD = 3.17 for husbands). The majority of the partici-
pants were Caucasian (wives: 76.1%, husbands: 79.1%); other well-
represented ethnicities included African American (wives: 8.2%,
husbands: 6.7%), Asian or Pacific Islander (wives: 4.5%, husbands:
6.0%), and Latina/Latino (wives: 5.2%, husbands: 5.2%).

Each couple received up to 26 sessions of therapy over the
course of one year. As part of the study, research staff had couples
select two current, serious relationship problems, one chosen by
each partner, and then had them engage in two dyadic discussions
in which they were instructed to try to understand and resolve these
respective relationship problems. There was no therapist or research
staff present during these sessions, and the couple interacted for ten
minutes about the wife’s chosen topic and ten minutes about the hus-
band’s chosen topic; these two ten-minute sessions were considered
separate and analyzed separately. The problem-solving interactions
were recorded at three points in time across the study: pre-therapy,
the 26-week assessment, and the two-year post-therapy assessment.
The sessions from the pre-therapy are employed in this paper.

The audio-video data consist of a split-screen video (29.97 fps)
and a single channel of far-field audio recorded from the video cam-
era microphone (16 kHz, 16-bit). Since the data were originally
only intended for manual coding by experts, the recording conditions
were not ideal for automatic analysis; the video angles, microphone
placement, and background noise varied across couples and across
sessions. We separate the audio streams of two individuals from the
dyadic conversation of a couple by speaker diarization, as will be
discussed in Section 3.1, and then analyze each of them with the av-
erage physiological responses (HR and RSA) for the corresponding
person. Therefore, two sessions for each of the 120 different peo-
ple (60 couples) contribute to a total of 240 audio streams. But we
discard very short audio streams that mainly occurred whenever a
particular person spoke very little (and the speaker diarization algo-
rithm failed to separate that speaker) in a conversation. This results
in total 226 sessions for further analysis.

For both the datasets, we have multiple baseline physiological
values for every participant. We use the average of all baseline values
for normalization purpose (will be described in Section 4.2).

3. METHODOLOGY
3.1. Audio preprocessing

For the CI dataset, each session has been passed through a
denoising module (implemented using VOICEBOX') which does
speech enhancement using MMSE estimate of spectral amplitude
[23]. The SI dataset didn’t require any denoising because of rela-
tively lower noise levels.

Two different techniques have been employed on the two
datasets to reject the silence regions from audio streams. For the SI
dataset, this is done by forced alignment of the audio with the tran-
script using the Gentle toolkit>. For the CI dataset, a robust LSTM
based Voice Activity detection (VAD) implementation [24] from
OpenSMILE [25] has been used since no transcripts were available
for this dataset.

After that, speaker diarization has been performed to delineate
the utterances of the two speakers in a given session. Forced align-
ment has been used on the SI dataset (since it has manual tran-
scripts), and a hierarchical agglomerative clustering implementation

"http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/
voicebox.html
2https://lowerquality.com/gentle/



Table 2. Pearson’s correlation (all correlations are statistically significant, i.e. p < 0.05) between the physiological variables (HR or RSA)

and the best correlated feature (indicated inside parenthesis)

Gender SI dataset CI dataset
RSA HR RSA HR
Mal —0.40 (mean falling slope —0.53 (mean bandwidth —0.40 (coefficient of variation ~ 0.36 (coefficient of variation
ale of loudness) of 3rd formant) of bandwidth of 1st formant) of bandwidth of 1st formant)
—0.42 (20th percentile 0.55 (range of 20th to 80th 0.40 (voiced segments 0.35 (mean harmonics
Female ’ . .
of loudness) percentile of loudness) per second) to noise ratio)
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Fig. 1. t-SNE plot of the acoustic features on both datasets.

from LIUM speaker diarization tool® has been employed on the CI
dataset (since it doesn’t have manual transcripts).

After that, speaker identity has been assigned to each of the two
audio streams. For the SI dataset, this is done by forced alignment
because we have manual transcripts annotated with speaker identity.
For the CI dataset, we automatically separated speech streams of
husband and wife (they are from different genders for every couple
in the dataset) based on their average pitch profile over the entire
session [26].

3.2. Acoustic feature extraction

We have extracted 88 dimensional extended GeMAPS (or
eGeMAPS) features [27] from speech over the whole session using
OpenSMILE toolkit. For the SI dataset, the features have been
extracted from the participant’s speech in a given session. For the
CI dataset, they have been extracted separately from husband’s
and wife’s speech over the entire session. The eGeMAPS features
mainly consist of statistical functionals (mean and coefficient of
variation [27]) of frequency related parameters like pitch, jitter,
and format frequencies; energy/amplitude related parameters like
shimmer, loudness, and harmonics to noise ratio; spectral balance
parameters like alpha ratio, Hammarberg index, and harmonic dif-
ferences; some temporal features like rate of loudness, and mean
length of voiced regions; and finally some cepstral features like
MFCC and spectral flux. The full list of features is as described in
[27].

3http://www-lium.univ-lemans.fr/diarization/
doku.php/Welcome
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Table 3. RMSE for regressing raw physiological variables (HR or
RSA)

Gender SI dataset CI dataset
RSA HR RSA HR
Male 1.81 12.61 1.14 8.99
Female | 2.01 11.28 | 1.22 11.94

3.3. Gender dependent models

During experimentation we have observed that computing cor-
relation separately for male and female speakers gives much better
results for both the datasets. We have noticed similar behavior for
the regression analysis as well. To find the reason behind this, we
computed the t-SNE transformation [28] of all the acoustic features
in both datasets to visualize them in a much lower dimension. Fig-
ure 1 shows the t-SNE result as a 2-dimensional scatter plot. We
can see clear clusters were formed within males and females from
both datasets, possibly because of fundamental differences between
some of the acoustics features (for example pitch) among men and
women. This inspired us to use gender dependent models for further
analysis.

3.4. Regression of physiological variables

We have employed AdaBoost regressor [29] with decision tree
regressor as base estimator for estimating raw or normalized values
of RSA and HR from acoustic features. All the 88 features have
been used by the regression model. 5-fold stratified cross validation
has been done. During regression we have made sure not to include
speech of the same speaker in both training and testing data. As we
have seen in Section 2, the SI dataset has one session per speaker
(so simple 5-fold cross validation works for this dataset), while the
CI dataset might have at most two sessions per speaker. For the
CI dataset, we have employed 5-fold cross validation such that no
two folds have speech from the same speaker or even same couple.
Optimal number of base estimators and the learning rate [29] of the
regressor have been chosen through 3-fold cross validation on the
training set and searching the parameter space by grid search. The
whole process has been repeated 5 times to get a better estimate of
test error.

4. EXPERIMENTS AND RESULTS

4.1. Analysis of two datasets separately

Pearson’s correlation coefficients have been calculated between
the acoustic features and the average values of the physiological sig-
nals (separately for HR and RSA) over all sessions. Table 2 lists the
best correlations obtained along with the name of the corresponding
features for both the datasets. All the p-values for the correlations
are statistically significant (two-tailed t-test). Maximum (in abso-
lute sense) correlations for RSA (-0.42) and HR (0.55) have been
observed for females in SI dataset. We should also notice that dif-
ferent features are dominating across the two datasets for the same
physiological variable in the same gender group. This might be be-



Table 4. Pearson’s correlation (all correlations are statistically significant, i.e. p < 0.05) between raw or normalized physiological variables
(HR or RSA) and the best correlated feature (indicated inside parenthesis) for combined dataset

Gender Raw Normalized
RSA HR RSA HR
0.22 (mean bandwidth —0.24 (coefficient of 0.33 (coefficient of variation of .
Male of 3rd formant) variation of shimmer) bandwidth of 3rd formant) 0.43 (mean alpha ratio)
—0.22 (mean length of voiced . 0.19 (standard deviation 0.35 (50th percentile
Female segments in seconds) 0.20 (mean of shimmer) of falling slope of pitch) of loudness)

Table 5. RMSE for regressing raw or normalized physiological vari-
ables (HR or RSA) in combined dataset
Gender Raw Normalized
RSA  HR RSA HR
Male 1.13  9.90 | 1.07 8.82
Female | 1.42 11.82 | 0.89 7.99

cause of the difference in the tasks (re-experiencing stressors in SI
dataset versus discussing about relationship conflicts in CI dataset)
the speakers are performing in the two datasets. For example, during
re-experiencing a stressor in front of an interviewer, one participant
might not be very emotionally or vocally aroused. On the other hand,
the same speaker might show strong arousal while discussing rela-
tionship conflicts under stress with his/her spouse.

Table 3 shows the regression results in terms of Root Mean
Squared Errors (RMSE). It might be useful to know that the range
of raw values (minimum, maximum) for RSA and HR over both the
datasets are (2.04, 8.89) and (50.0, 112.08) respectively. Although
we got overall better correlation for SI dataset (Table 2), the regres-
sion results on SI dataset are a little bit worse than that of CI dataset.
‘We suspect the reason to be the far fewer number of training samples
in SI dataset. It is worth mentioning here that the observed correla-
tions and RMSE values are similar (or sometimes better for the case
of HR) to previous study [19] (please see the speaker independent
(LOSO) case in that paper) although the speaking tasks are very dif-
ferent.

4.2. Combining two datasets

To see the robustness of the results we also analyzed the corre-
lation and regression performance after combining both the datasets.
The ‘Raw’ column of Table 4 presents Perason’s correlation values
between the best correlated acoustic feature and the raw physiologi-
cal values. We can see the correlations drop by a large margin from
the values we obtained separately in two datasets. One major reason
for this might be coming from different distributions of the physio-
logical signals in the two datasets because of the inherent difference
between the tasks the users are doing there (as we discussed in Sec-
tion 4.1). So, to tackle the situation, we normalize the physiologi-
cal signals for every user by subtracting the corresponding average
baseline physiological values (as discussed in Section 2). Now we
get a boost in the correlations (please see ‘Normalized’ column of
Table 4) except for RSA of females. The best correlations for RSA
(0.33) and HR (0.43) have been observed for males in the combined
datasets.

Table 5 shows the RMSE values for regressing the raw and nor-
malized physiological values on the combined dataset. We can see
better performance for predicting raw values (even though correla-
tions degraded) than what we obtained only on SI dataset. This has
possibly happened because of having more training samples. Note
that we can not directly compare the ‘Normalized’ RMSE with the
‘Raw’ RMSE because of the range difference of their values due to
normalization.

4947

5. CONCLUSION

In this study, we tried to find the relationship between acous-
tics and physiology during stressful conversations between humans.
Employing gender dependent models was found to be more useful
than gender-independent ones. Separate experiments on two datasets
helped us identify acoustic features that are significantly correlated
with the physiological responses. We noticed a degradation in corre-
lation when we combined two datasets, but per-speaker normaliza-
tion of the physiological variables enhanced the performance. While
regressing the physiological variables separately on two datasets,
we observed overall (3 out of 4 cases) better performance for the
dataset with more participants. Possibly due to the same reason, we
achieved satisfactory RMSE values for the combined dataset.

This study helps us infer that it is possible to find some acous-
tic features that are significantly correlated with the physiological
signals under the conditions of both our datasets (Section 2). This
seems to agree with the hypotheses from Section 1 that the stress
has an effect on both modalities, speech and physiology. The regres-
sion results give a better picture about how accurately we can pre-
dict physiological signals (RSA and HR for this study) from speech
acoustics for stressful conversations between humans. This also
sheds light on our idea of quantifying the intensity of stress instead
of just detecting it.

In the future, we are planning to investigate on finding better
acoustic features. We will also apply deep learning models and ex-
ploit any available temporal pattern in the speech signal that could
help us predicting physiological responses more accurately. Further,
the connection between physiology and acoustics can be studied
without any human labeling, so it opens up possibilities for larger
data collections and more robustly associating the two via advanced
modeling.
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