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ABSTRACT
Age estimation from speech recently received a lot of atten-
tion. Approaches such as i-vectors and deep learning have
been successfully applied to this task achieving great per-
formance. However, one drawback of those methods is that
they produce a hard age estimation without any kind of con-
fidence measure about the quality of the prediction. Design-
ing systems with the ability to provide a confidence measure
about their output is extremely valuable for several applica-
tions where the cost of making bad decisions is worse than
making no decision, e.g., forensics. In this paper, we propose
a novel framework to jointly predict the age and its estima-
tion uncertainty in a context of neural regression model. This
model is trained using probabilistic fashion instead of using
the classical minimum mean square error objective used for
regression tasks. The probabilistic output corresponds to a
Gaussian posterior. The proposed neural network will esti-
mate both the posterior mean which corresponds to the pre-
dicted age and the variance which quantifies the uncertainty
of the prediction. We evaluated our approach on two different
datasets NIST SRE 2008 - 2010 and Switchboard.

Index Terms— uncertainty estimation, age estimation,
deep learning, RNN, LSTM

1 Introduction
Given the ubiquity of mobile phones and home assistant de-
vices allowing human-machine interaction, there is a growing
interest on extracting other relevant information from speech
other than the message itself. For example, the speaker iden-
tity, ethnicity, emotion and age can be used to offer tailored
product and services to customers [1]. This information can
help to optimally pair customer and agents in call centers sce-
nario. Nevertheless, we can also use it in forensics setting to
narrow the list of suspects in a criminal investigation.

In this paper, we focus on the age estimation problem.
Approaches like neural networks [2] and i-vectors [3, 4] have
been largely explored to estimate the age. Deep learning has
been extremely successful in most speech related areas like
speech recognition [5], speaker recognition [6, 7] and speech
synthesis [8]. Training a neural network based regression

model to predict the speaker’s age is straightforward. Despite
the promising results, these models still make errors, which
can be very harmful [9]. We would like the model to pro-
vide a measure indicating the uncertainty of the prediction,
i.e., whether the prediction is reliable or not. We could use
this uncertainty to establish a confidence interval for the pre-
diction.

Beyond the theoretical interest of this issue, it has a very
wide range of real applications. An evident example is foren-
sics. In court, it is not enough to provide a prediction of the
suspect’s age but the judge will want to know how accurate
the prediction is. In this case, the age uncertainty is equiv-
alent to the log-likelihood ratio used in speaker recognition
task. Log-ratios close to zero indicate that we are not sure
about the speaker identity while high log-ratios (positive or
negative) indicate that we are confident about the target or
non-target hypothesis. Another example is a call center where
agents are specialized to deal with different age ranges. If the
system is not confident about the customer age, it will send
the call to a generic agent.

In Bayesian modelling there are two types of uncer-
tainty [10]:

• Epistemic: it measures the ignorance of the data gener-
ating process.

• Aleatoric: it captures our uncertainty with respect to
information which the data cannot explain. It can
be further divided into two types: task-dependent or
Homoscedastic uncertainty which is constant for all
inputs; and data-dependent or Heteroscedastic uncer-
tainty which depends on how noisy input is.

In previous work, Gal [11] shows the connection between
dropout and Bayesian inference in deep Gaussian processes.
The Bayesian interpretation of dropout enables to predict
epistemic uncertainty. There are also several works using
Bayesian networks to measure uncertainty [12, 13]. In speech
recognition, uncertainty is used to improve noise robust-
ness [14]. Also, in speaker verification the uncertainty about
the likelihood ratio is used to decide whether the decisions
are reliable or not [15, 16].
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In this paper, we consider aleatoric uncertainty. Though
we focus on age estimation, this framework is general enough
for any regression problem. This is a representative sequen-
tial regression problem where, given a sequence of feature
frames, we intend to jointly predict the speaker age and its
uncertainty.

The rest of the paper is organized as follows. Section 2
presents the regression model and its extension to estimate
uncertainty. Section 3 describes the experimental setup and
present results on NIST and switchboard databases. Finally,
Section 4 summarizes the paper and proposes further discus-
sion.

2 Joint age and uncertainty estimation
2.1 Maximum likelihood regression
The typical loss function for regression problems consists in
minimizing the sum-of-squares error,

MSE =

N∑
i=1

(ti − y(xi))2 (1)

where ti is the true value, xi is the input feature and y is the
prediction function.

We can view MSE from a probabilistic point of view.
Let’s assume that the posterior distribution of ti given and
observed feature xi is Gaussian with mean y(xi),

P (ti|xi) = N (ti|y(xi), σ2) (2)

where the constant variance σ2 measures the uncertainty of
the prediction. Now, to estimate the parameters of the pre-
dictor, we maximize the log-likelihood of the training data
{X,T},

logP (T|X) = − 1

2σ2

N∑
i=1

(ti − y(xi))2 −
N

2
log(2πσ2) .

(3)

As σ2 is a constant which does not depend on any input xi, it
is evident that maximizing (3) is equivalent to minimizing the
MSE in (1).

We can also maximize the likelihood w.r.t. σ2 to get the
closed form expression

σ2 =
1

N

N∑
i=1

(y(xi)− ti)2 . (4)

This is a case of homoscedastic uncertainty, i.e., the uncer-
tainty is the same no matter which signal we have in the in-
put. This is very limited given that different signals involve
different difficulties. For the case of age, we have noted that
young age predictions are more accurate than those of elder
people because of the lack of data for aged people. Also,
noisy speech implies more uncertainty than clean speech.

We can estimate the variance on the own training set but
may be better to use a held-out set for this purpose.

Fig. 1. Neural regressor with uncertainty estimation. The
network structure can be of various types, e.g., RNN and feed-
forward network.

2.2 Heteroscedastic uncertainty
We can extend the previous model to consider heteroscedastic
uncertainty, i.e., having a different uncertainty estimation for
each recording. To accomplish this goal, we just modified the
objective function as,

logP (T|X) =

N∑
i=1

logN (ti|y(xi), σ2(xi)) (5)

where in this case σ2 is a function that depends on the input
xi. We will jointly optimize the parameters of the functions
y and σ2. In practice, we used a neural network with two
different outputs, one for mean y and one for variance σ2; as
shown in Figure 1. Thus, we can optimize the objective by
stochastic back-propagation methods.

This framework allows us to provide sample dependent
confidence intervals. For example, as we assumed a Gaussian
posterior, we can say that predicted age is y ± 2σ with 95%
of confidence.

2.3 LSTM network
Long-short term memory networks (LSTM) [17] are a type
of recurrent neural network that attains great performance in
sequence modeling problems [18, 19]. Each LSTM layer con-
sists of a structure, which contains a memory cell. This cell
can accumulate information during a long period of time. It
also includes ‘gate’ units–input, forget and output– which de-
cide when to write, delete or propagate the information of the
memory cell. LSTMs overcome the vanishing gradient prob-
lem better than basic RNNs.
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Preliminary experiments comparing feed-forward net-
works, TDNN [20, 5] and LSTM showed better performance
of the latter. Thus, we used LSTM networks for this paper
experiments. However, we remark that we present a general
framework that can be applied with other architectures.

2.4 Variance estimation for sequences
Since speech is sequential data, for most network architec-
tures we will get and age prediction per frame. For LSTM net-
works, it is also common practice, given that they accumulate
the sequence information in its memory cells, to provide one
prediction per sequence. However, LSTMs still have a limited
memory span, and cannot cope with very long sequences. In
this case, it is common practice to produce a prediction per
chunk of frames, e.g., one value every 5 seconds.

Thus, for each frame or chunk we obtain a different age
and uncertainty value. The question is now how to compute
the age and uncertainty for the whole utterance. Given that
the age prediction is a Gaussian posterior, we can assume that
sequence posterior is the average of Gaussian variables. The
average of Gaussian variables is also Gaussian with mean

y =
1

M

M∑
j=1

yj (6)

where M is number of frames or chunks.
Meanwhile, the variance of the sequence depends on the

degree of correlation between predictions. If we consider, that
all prediction are independent between them,

σ2 =
1

M2

M∑
j=1

σ2
j . (7)

However, as all the predictions intend to predict the same age,
we should expect some correlation between predictions. With
correlation coefficient ρ and M = 2, the variance is

σ2 =
1

4
(σ2

1 + σ2
2 + 2ρσ1σ2) . (8)

In case maximum correlation, i.e. ρ = 1, the sequence vari-
ance is

σ2 =
1

M2
(

M∑
j=1

σj)
2 . (9)

3 Experiments
3.1 General experimental setup
We experimented on NIST SRE 2008-10 (in-domain) and
Switchboard (out-of-domain) datasets.

In previous works, performance was reported in terms
of mean absolute error (MAE). However, this measure does
not take into account the uncertainty, so it is not useful for
our purposes. Instead, we propose to use the likelihood of

Model Log Likelihood
Homo(Train) -3.70
Homo(Val) -3.72
Hetero last-frame -4.49
Hetero frame-avg (ρ = 1) -3.45
Hetero chunk-avg (ρ = 1) -3.47
Hetero frame-avg (ρ = 0.75) -5.32
Hetero chunk-avg (ρ = 0.75) -3.58
Hetero frame-avg (ρ = 0) -7208.27
Hetero chunk-avg (ρ = 0) -13.83

Table 1. Likelihood comparison on NIST SRE data. Aver-
aged over 15 folds.

evaluation data given the predicted posterior distributions
(mean and uncertainty) in (5). In fact, MAE approximates the
square root of the likelihood when σ = 1, so they are related.
We take the homeostatic framework as baseline–equivalent
to minimum square error– and show that the heteroscedastic
attains better performance.

For all experiments, the features were 20 MFCC with ap-
pended first and second derivatives plus probability of voicing
(POV), pitch and delta-pitch [21]. Short-time cepstral mean
variance normalization (CMVN) was used with 3 second slid-
ing window.

The regressor consisted of two LSTM layers with 256
neurons as well as two ReLU fully connected layers with 512
and 256 neurons respectively. Finally, two linear output lay-
ers predict the age mean and log-variance. The LSTM layers
used dropout with 30% drop rate [22]. Adam optimizer [23]
was used with 0.002 learning rate. Similar to [24], the targets
are normalized to zero mean and unit variance. We considered
the case where the LSTM provides a prediction per frame,
and the case where it provides a prediction every 5 seconds
(chunks). Training was done feeding 5 second chunks to the
network.

3.2 In-domain experiments
We experimented on NIST SRE 2008-10 which has 1597
speakers between 20 to 70 years old and 9442 telephone ut-
terances with 8 kHz sampling rate. For consistency, we used
the same experimental setup as in [4, 2]. Data was divided
into 15 folds without overlapped speakers. 15 independent
test are executed: each time we train on 14 folds and evaluate
in the remain fold.

Table 1 reports the log-likelihood in (5) for different cases.
Homo(Train) denotes the baseline system with constant vari-
ance estimated on the training set while Homo(Val) estimate
the variance on held-out validation data. Hetero denotes our
proposed approach. We consider several cases: last-frame
which just takes the output of the last frame of the sequence;
frame-avg which makes decisions at a frame level basis; and
chunk-avg which splits the utterance into 5 second segments
and gets predictions from the last frame of each segment. In
the frame-avg and chunk-avg the sequence level variance is
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Fig. 2. How mean absolute error changed with various uncer-
tainty range. Color indicates the proportion of samples in this
range.

computed using equations in Section 2.4. The heteroscedastic
model outperforms the baselines (frame-avg) for both frame
and chunk level predictions if we assume strong correlation
between predictions. Evaluating in the last frame performs
poorly because the sequences are too long for the LSTM
memory span. Assuming independence across predictions
also performs poorly because it leads us to be over-confident
about the prediction.

Next, we consider the utility of the uncertainty for a real
application where the cost of taking a bad decision is larger
than not taking any decision, e.g., forensics. In this case we
put a threshold τ on the uncertainty–we use the standard de-
viation here σ–, and reject all the decisions whose uncertainty
is larger than the threshold. To evaluate how good the uncer-
tainty is, we report the mean absolute error on the utterances
that we consider reliable:

MAE(τ) =
1∑

σi≤τ 1

∑
σi≤τ

|ti − yi| . (10)

This criteria shows the correlation between uncertainty and
the real metric (MAE).

Figure 2 shows the result for the best system on Table 1.
The x-axis indicates the threshold for uncertainty and y-axis
represents the mean absolute error calculated by (10). The
colormap shows the proportion of data whose uncertainty is
equal or less than the threshold. The figure shows that our
method reduces MAE from more than 6 to around 3 by keep-
ing the 30% segments with lower uncertainty.

Model Log Likelihood
Homo(Train) -3.84
Homo(Val) -4.80
Hetero frame-avg (ρ = 1) -3.75

Table 2. Likelihood comparison on Switchboard data.

Fig. 3. How mean absolute error changed with various uncer-
tainty range for out-of-domain data (Switchboard data).

3.3 Out-of-domain experiments
An interesting topic is whether the estimated uncertainty can
be generalized to another corpus. To show the generalization
of our framework, we used the Switchboard data. The SWB
data contains 1,962 speakers between 14 to 85 years old and
20,905 utterances of SWB Cellular and SWB 2 Phases II and
III. Table 2 reports the likelihood on the Switchboard corpus.
Again, our method outperforms the baseline.

Figure 3 plots MAE versus uncertainty threshold. We ob-
serve that we cannot reduce the MAE as much as in the NIST
data. However, using the threshold that provides MAE=3 on
NIST we reduce Switchboard MAE from 8 to around 6.

To be noted, regardless of in-domain or out-of-domain,
the slope is always less than 1 which means the actual mean
absolute error is less than the uncertainty that we estimated.

4 Conclusion and Future Work
This paper proposes a new framework to predict uncertainty
in neural-based regression systems. Likelihood is optimized
instead of original mean square error to jointly optimize the
target value and uncertainty estimation. We adopted speech-
based age estimation as the study case. We show how to deal
with uncertainty in the case of sequences where we obtain
frame level predictions and need to compute a global uncer-
tainty for the whole sequence. We experimented on NIST
SRE (in-domain) and Switchboard datasets (out-of-domain).
In both cases, utterances with low uncertainty provide lower
mean absolute error than utterances with high uncertainty
which proofs the utility of our method.
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