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ABSTRACT

Training discriminative classifiers involves learning a condi-
tional distribution p(yi|xi), given a set of feature vectors xi and
the corresponding labels yi, i = 1..N . For a classifier to be gen-
eralizable and not overfit to training data, the resulting conditional
distribution p(yi|xi) is desired to be smoothly varying over the
inputs xi. Adversarial training procedures enforce this smoothness
using manifold regularization techniques. Manifold regularization
makes the model’s output distribution more robust to local pertur-
bation added to a datapoint xi. In this paper, we experiment with
the application of adversarial training procedures to increase the
accuracy of a deep neural network based emotion recognition sys-
tem using speech cues. Specifically, we investigate two training
procedures: (i) adversarial training where we determine the adver-
sarial direction based on the given labels for the training data and,
(ii) virtual adversarial training where we determine the adversarial
direction based only on the output distribution of the training data.
We demonstrate the efficacy of adversarial training procedures by
performing a k-fold cross validation experiment on the Interactive
Emotional Dyadic Motion Capture (IEMOCAP) and a cross-corpus
performance analysis on three separate corpora. Results show im-
provement over a purely supervised approach, as well as better
generalization capability to cross-corpus settings.

Index Terms— Adversarial training, Manifold regularization,
Speech emotion recognition

1. INTRODUCTION

Design of emotion recognition systems is a classical problem with
applications in several fields including medicine, analysis of human
interaction and other behavioral studies [1]. An emotion recogni-
tion system design involves extracting cues from facial expressions,
speech or body language and expressions and depict them as feature
representations. This is followed by training a classification algo-
rithm using existing supervised/semi-supervised methods [2, 3]. We
consider a setting with N training examples {xi, yi}, i = 1, .., N ,
where xi is the obtained feature representation for example i and
yi is the corresponding label. Let x and y denote the random vari-
ables of which xi and yi are instances. A typical supervised learn-
ing approach involves modeling the probability p(y|x) using a cho-
sen functional form (e.g. neural networks, support vector machine
classifier). For the chosen model (trained on finite training data) to
generalize well to unseen data, the probability p(y|x) is desired to
have certain properties [4]. One such property is the smoothness of
the distribution p(y|x) which states that if two points xi and xj are
close to each other in feature space (based on some distance met-
ric) then so should be their corresponding model outputs p(yi|xi)

and p(yj |xj). The underlying idea is for the classifier to be gen-
eralizable and not overfit to training data. Enforcing this smooth-
ness can be particularly useful for low resource tasks such as emo-
tion recognition, where collecting a large number of labeled data
instances may not always be possible. Methods such as manifold
regularization impose this smoothness by modifying the optimiza-
tion objective [5]. Manifold regularization exploits the distribution
p(x) as available through a set of labeled/unlabeled points to better
estimate p(y|x) thereby leveraging the concept of manifold learning
to enforce model smoothness.

In the past, researchers have investigated manifold learning
methods for speech based emotion recognition. Most of these meth-
ods attempt to learn the manifold by reducing the dimensionality
of the input feature space and subsequently feeding them to a clas-
sifier. For example, [6, 7] employed isometric feature embedding
for deriving the manifolds and then used Gaussian Mixture Models
as classifiers. You et al. [8] employed Lipschitz embedding for
non-linear manifold learning in an unsupervised way followed by
using support vector machines for classification. Qian et al. [9]
applied a supervised manifold learning method by considering the
difference between feature subsets of different classes and reported
improvement in recognition accuracy. However, none of them have
investigated manifold regularization techniques that jointly optimize
a manifold regularization loss along with supervised classification
loss. In particular, jointly optimizing the two losses has shown
promise with deep neural networks (DNNs) for improving ASR [10]
and sentiment classification [11]. Researchers have proposed several
manifold regularization techniques, starting from Belkin et al. [5]
and Geng et al. [12]. These methods make use of available la-
beled/unlabeled data points for regularization for better performance
of classification models. Another way of ensuring smoothness is
to train the model to produce similar outputs for a set of inputs
obtained by adding a small amount of random perturbation to the
training data [13]. This makes the model generalize better and it has
been employed for semi-supervised learning [14]. Goodfellow et
al. [15] suggested an improved method called Adversarial Training
(AT) in which the perturbations are added only along an adversarial
direction. Adversarial direction for a certain training data point is
the direction along which the label probability of the model for that
data point is most sensitive. Miyato et al. [16] proposed an extension
of adversarial training wherein determining the adversarial direction
didn’t depend on the availability of labels, termed as Virtual Adver-
sarial Training (VAT). We refer to the training methods proposed by
Goodfellow et al. [15] and Miyato et al. [16] as adversarial training
procedures, and investigate their applicability for improving the
performance of emotion recognition systems.

In this paper we compare the performance of AT and VAT to that
of a baseline DNN model for emotion recognition. After training the
model using the aforementioned procedures, we evaluate its perfor-
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mance under two settings: (i) Running a cross validation experiment
on a single corpora (ii) Doing a cross corpora study. Under the sin-
gle corpora setting, we aim to understand the impact of adversarial
training on system performance under matched conditions. We note
that we train a neural network on a few thousand samples, and aim to
harness manifold regularization techniques to achieve a lower gen-
eralization error. In the cross corpora setting, we train the model on
a single dataset and evaluate performance on three separate unseen
datasets. We hypothesize that since manifold regularization imposes
smoothness constraint on the model’s outputs for the data points that
are in the neighborhood of each other, it can also make the model
more robust to noise arising due to difference in data distributions.
In the next section, we provide a background of the adversarial train-
ing procedures (AT and VAT) , followed by a detailed explanation of
the experiments in Section 3. We finally present our conclusions in
Section 4.

2. ADVERSARIAL TRAINING PROCEDURES FOR
EMOTION RECOGNITION

Given the set N labeled data points {xi, yi}, i = 1, .., N , we rep-
resent the DNN output for the point xi as θ(xi). θ(xi) is a vector
of probabilities that the DNN assigns to each class in the label space
spanned by y. We define a loss function based on the DNN out-
puts and the one hot-vectors yi corresponding to labels yi, as shown
below. V (θ(xi),yi) is the loss for the data point xi and typical
choices include cross-entropy, mean squared error or the hinge loss.

L =
1

N

N∑
i=1

V (θ(xi),yi) (1)

Generalizing the performance of a model trained solely on the
loss above is challenging, particularly with a small number of train-
ing instances N . Studies have used L1 or L2 regularizers on DNN
parameters or dropout to prevent overfitting to the training set [17].
Manifold learning and smoothing is an alternate way to build mod-
els that generalize better. These approaches add a regularization term
that penalizes large differences in model outputs when a small per-
turbation is added to a data point. We determine the nature of this
perturbation based on two existing methods: (i) adversarial training
and, (ii) virtual adversarial training, as discussed next.

2.1. Adversarial training

Adversarial training [15, 16] penalizes large perturbations in model
outputs when small perturbations are added to the training data
points xi. We determine a perturbation vector rai for every data-
point xi, and optimize the loss Ladv to train a DNN, as shown in
Equation 2. D is a non-negative function that quantifies the dis-
tance between the predictions θ(xi + rai ) and targets yi. α is a
tunable hyper-parameter, determining the trade-off between L and
the adversarial loss.

Ladv = L+ α× 1

N

N∑
i=1

D(yi, θ(xi + rai )) (2)

We determine the perturbation rai based on Equation 3. ε is a
hyper-parameter that determines the search neighborhood for rai .

rai = arg max
r:‖r‖≤ε

D(yi, θ(xi + r)) (3)

Considering ||r|| to be the Euclidean norm, rai in Equation 3 can
be approximated as shown below.

radv ≈ ε
g

‖g‖2
, where g = ∇xiD(yi, θ(xi)) (4)

The gradient term in Equation 4 can be easily computed during
back-propagation. We note that this optimization has two hyper-
parameters to tune, α and ε. We investigate the impact of these
hyper-parameters on the model performance in one of our experi-
ments.

2.2. Virtual adversarial training

Similar to adversarial training, virtual adversarial training [16] pe-
nalizes large variations in model outputs given small perturbations
in the input. However, in this case the optimization is performed as
shown in Equation 5. Instead of computing D using the labels yi,
we use the predictions θ(xi) on the actual datapoints.

Lvadv = L+ α ∗ 1

N

N∑
i=1

D(θ(xi), θ(xi + rvi )) (5)

where the adversarial perturbation rvi for training example xi is
defined as following

rvi = arg max
r:‖r‖≤ε

D(θ(xi), θ(xi + r)) (6)

The algorithm to compute rvi is described in detail [16]. As
can be seen from Equation 5, the regularization loss term doesn’t
depend on labels. So, it can be used in semi-supervised training
scenarios where the first term L is computed using labeled data and
the second term is computed using both labeled and unlabeled data.
Since in our experiments we do not have access to huge amounts
of unlabeled data, the adversarial loss is calculated only using the
available labeled dataset.

3. EXPERIMENTS

We perform experimental investigations under two settings: (i) a sin-
gle corpora setting using a cross validation setup and, (ii) a cross
corpora setting involving training on one corpus and testing on the
other. In the single corpora setting, we aim to test improvements
in the generalized performance of the model under matched dataset
conditions. However, in the case of cross-corpora evaluation, rep-
resentations for emotional utterances tend to be dissimilar due to
factors such as differences in data collection protocol and noise con-
ditions. Through cross-corpora evaluation, we aim to investigate if
manifold regularization can yield models robust to the corpus spe-
cific variations.

3.1. Single corpora setting

We use the Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [18] dataset for our single corpora evaluation. The dataset
consists of approximately 12 hours of speech from 10 subjects. For
our classification experiments we only focused on a set of 4490 utter-
ances spanning four emotional labels: neutral (1708), angry (1103),
sad (1084), and happy (595). These utterances have a majority agree-
ment amongst the annotators (at least two out of three annotators) re-
garding the emotion label. Please refer to [18] for more information
regarding the dataset.
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3.2. Cross corpus evaluation

We use a set of three datasets for the cross corpora evaluation. We
train a DNN on the IEMOCAP dataset to identify four classes of
emotion, followed by predictions on these datasets.

Surrey Audio Visual Expressed Emotion (SAVEE) database:
Surrey Audio-Visual Expressed Emotion (SAVEE) database [19] has
recordings of four male speakers reciting IEEE sentences in seven
different emotions. For the purpose of our evaluation, we only select
the subset of utterances belonging to one of the four target emo-
tions, as predicted by the model trained on the IEMOCAP dataset.
The dataset consists 60 utterances each belonging to the angry, sad,
happy classes and 120 neutral utterances. We acknowledge that
transfer of models across corpora spanning different label spaces is
a challenge. By selecting a subset of utterances in our experiments,
we simulate a study that assumes that the two datasets span the same
label space.

Electromagnetic Articulography (EMA) database: Electro-
magnetic Articulography (EMA) database [20] contains a set of 680
utterances spoken in four different target emotions, such as anger,
happiness, sadness and neutrality. Speakers are native speakers of
American English: two females and one male. Note that the label
space spanned by this dataset is equivalent to the one spanned by
utterances in the training set.

Linguistic Data Consortium’s (LDC) emotional prosody
dataset: This database [21] was developed by LDC and contains
the recordings of professional actors reading a series of semantically
neutral utterances (dates and numbers) spanning fourteen distinct
emotional categories. We select a subset of 714 utterances from the
dataset that span the four emotion labels as modeled using training
on the IEMOCAP dataset.

We note that there are several dissimilarities between the IEMO-
CAP dataset and the datasets used in the cross corpora study.
Whereas the speakers in EMA and LDC have an American ac-
cent, SAVEE has speakers having a British accent. Unlike IEMO-
CAP, these databases aren’t dyadic conversations. While EMA and
SAVEE have speakers speaking different sentences emulating dif-
ferent emotions, in the LDC database we have speakers reading out
numbers while emulating different emotions. We next discuss the
features extracted on these datasets.

3.3. Features

We use the openSMILE toolkit to extract a set of 1582 features [22].
This feature set consists of various functionals computed for spec-
tral, prosody and energy based features. Same feature set has also
been used in several previous works including the INTERSPEECH
Paralinguistic Challenges [23]. Similar sets of spectral, prosodic and
energy based features has shown considerable success in emotion
classification and affect tracking [24]. However an increased feature
count leads to the “curse of dimensionality”, a problem that manifold
learning and smoothing can mitigate.

3.4. Experimental setup

We use a DNN as our classification model, such that the output layer
consists of four nodes (each corresponding to an emotion), with soft-
max activation function. The DNN has three hidden layers with the
number of neurons in each layer set to 128. The objective function
V (θ(xi),yi) is chosen to be the cross entropy loss in our experi-
ments [25]. While performing AT we chose the D function to be
cross entropy between yi and θ(xi + rai ), while in the case of VAT
D is set to be the cross entropy between θ(xi) and θ(xi + rvi ). As

Fig. 1. Unweighted accuracies vs the hyper-parameters ε (left) and
α (right) for baseline DNN (green), DNN trained with AT (blue) and
DNN trained with VAT (red)

a baseline, we use a DNN with purely supervised loss (by setting
α = 0 in Equation 2). In [16], the authors considered two different
distance functions D for VAT training: (i) Kullback-Leibler diver-
gence between θ(xi) and θ(xi + rvi ), (ii) cross entropy between
θ(xi) and θ(xi + rvi ). We also experimented with the Kullback-
Leibler divergence as the distance function D, without observing
significant differences in the model performances.

We implemented the AT and VAT model training in Keras [26]
with a Tensorflow backend and perform optimization using stochas-
tic gradient descent [27]. Our evaluation metric is Unweighted Ac-
curacies (UWA) which has been used previously in emotion clas-
sification tasks [28]. Since the distribution of emotion classes are
unbalanced in the datasets of interest, the UWA metric assigns equal
weight to each emotion class during evaluation. Next, we present
further details regarding the single corpus and cross corpus evalua-
tion.

3.4.1. Results: Single corpus setting

We perform a leave one session out cross validation experiment on
IEMOCAP. Through this experiment, we aim to understand the im-
pact of the two hyper-parameters ε and α on the model performance.
In order to study their impact individually, we perform evaluation by
perturbing one of the two parameters, while keeping the other con-
stant. By altering ε, we aim to understand the impact of smoothing
radius around the data-points on the model performance and per-
turbing α impacts the weight of the adversarial loss on the overall
optimization. The plots comparing the UWA of baseline DNN with
that of DNN with adversarial training procedures for different values
of hyper-parameters is shown in Figure 1.

It is evident that DNN trained with adversarial training proce-
dures perform better than the baseline DNN. First, the value of αwas
kept fixed at 2 and ε was varied. For DNN trained with adversarial
procedures, the model shows a higher performance for lower value
of ε peaking at ε = 0.5. As we increase the value of ε, the model’s
performance starts deteriorating. This is expected since ε defines the
neighborhood around an input feature vector over which the con-
ditional distribution p(y|x) is smoothed. Increasing the radius of
this neighborhood forces our model to learn smoother functions that
cannot capture the complexity of the conditional distribution func-
tion p(y|x) thereby decreasing its performance on the validation set.
For lower values of ε, AT outperforms VAT which may be due to the
fact that AT is a supervised learning scheme where we use actual la-
bels to find the adversarial direction. However, for higher values of
ε, the trend reverses which leads us to believe that for larger values
of search radius we are better off smoothening the output of the per-
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Fig. 2. TSNE plots comparing the output of the baseline DNN model
(left), DNN trained with AT (center) and DNN trained with VAT
(right)

Table 1. Class-wise accuracies (%) for one of the cross validation
iterations showing how the adversarial procedures smoothen the con-
ditional probability distribution p(y|x). The “happy” class with least
number of training samples has higher UWA for adversarial training
procedures

Class Baseline DNN DNN with AT DNN with VAT
Angry 80.78 80.34 79.48
Sad 93.81 92.78 92.27
Neutral 36.19 33.59 39.06
Happy 0.00 33.33 25.92

turbed input with respect to the output of the actual input rather than
the label. Changing the weight α while keeping ε fixed at 0.5 did not
seem to affect the accuracies of AT very much. For VAT however,
increasing the weight of the VAT loss parameter in the loss function
decreases the performance of the system. It was observed that for
α = 2 and ε = 0.5 performance of AT was the best giving us UWA
of 58.00% as compared to baseline DNN’s performance of 53.47%.
The VAT model was close to AT model at 56.54%.

As our goal in this work is to smoothen the posterior probabil-
ity distribution of the labels given the feature vectors (expressed by
p(y|x)), we perform further analysis by projecting and visualizing
the four dimensional output vector θ(xi) using t-Stochastic Neigh-
bor Embedding (t-SNE) approach [29]. t-SNE is a dimension reduc-
tion technique that clusters similar vector values together. Figure 2
shows the results with ε and α values fixed at 0.5 and 2, respec-
tively. We observe that while the baseline DNN’s output has very
sharp boundaries, the output that we get from the model trained with
adversarial training procedures has a wider spread. This is indica-
tive of the smoothing effect of the manifold regularization losses.
We further investigate the impact of adversarial losses on the class-
wise performance, as shown in Table 1. In particular, the adversarial
procedures were better at classifying the “happy” samples than the
baseline DNN (Table 1). The class “happy” has the least number of
samples compared to any other class in the training set. Smoothing
the conditional distribution p(y|x) yields better generalization and
the minority class is not confused with other classes. In the next
section, we discuss further results on the cross-corpus settings.

3.4.2. Results: Cross corpus evaluation

Since the adversarial procedures make the model robust to small per-
turbations to the input training points, we hypothesize that the reg-
ularized models are also robust to variation across datasets arising
due to dissimilar noise conditions. Hence a model trained on an ex-
ternal corpus can achieve better performance on a dataset of interest.

Table 2. Cross-corpus accuracies (%) obtained using baseline DNN
and DNN models trained with adversarial procedures. The training
was performed using IEMOCAP in all cases.

Test Dataset Baseline DNN DNN with AT DNN with VAT
SAVEE 42.5 46.25 46.04
EMA 58.91 61.65 60.75
LDC 37.91 43.18 42.29

To verify this, we did a cross corpus analysis where the whole of
IEMOCAP dataset was used for training and a different corpus was
used for testing. We extract the openSMILE features for the three
external corpora, followed by mean-variance normalization using in-
corpus statistics. We compare the UWA for three datasets as shown
in Table 2 and show the superior performance of models trained with
adversarial training procedures than baseline DNN. This indicates
that the adversarial procedures increase model robustness to cross-
corpus differences. Similar to the the single corpus results, an abso-
lute increase of 15-25% was observed on the classification results of
the “happy” class. We also note that the IEMOCAP trained models
perform better on EMA compared to the other two datasets. This
can be explained by domain variabilities. While SAVEE has British
accented speech, in LDC the actors are reading out just numbers in-
stead of actual English sentences. EMA being an American English
corpus where participants are reading out sentences, comes closest to
IEMOCAP which has actors having conversations in English. This
observation suggests that despite better model generalization across
datasets, data specific characteristics still play a part in determining
the model performance.

4. CONCLUSIONS

This paper shows the effectiveness of adversarial training procedures
for emotion classification using a DNN model. Adversarial train-
ing enforces the smoothness of the output probabilities p(y|x), a
case particularly applicable to low resource tasks such as emotion
classification. We perform two sets of evaluation, a single corpus
evaluation on the IEMOCAP dataset and three evaluations using a
cross-corpus setup. In both the cases, we observe an improvement
in the classification performance using the adversarial methods. We
perform further investigation to understand the impact of the model
hyper-parameters on the model performance and analyze the model
outputs using t-SNE projections of the model outputs.

In the future, we aim to conduct further investigations using the
adversarial loss. In particular, the VAT training can be used for
semi-supervised optimization. This can be performed using an in-
domain/external source for unlabeled data. We also aim to inves-
tigate other distance metrics D and its impact on the performance.
Another pertinent problem is making the cross-corpus study compat-
ible to different output label spaces across the datasets. Finally, one
can also test the adversarial methods to other low resource problems.
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