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ABSTRACT 

 

Predicting continuous emotion in terms of affective attrib-

utes has mainly been focused on hard labels, which ignored 

the ambiguity of recognizing certain emotions. This ambigu-

ity may result in high inter-rater variability and in turn caus-

es varying prediction uncertainty with time. Based on the 

assumption that temporal dependencies occur in the evolu-

tion of emotion uncertainty, this paper proposes a dynamic 

multi-rater Gaussian Mixture Regression (GMR), aiming to 

obtain the emotion uncertainty prediction reflected by multi-

raters by taking into account their temporal dependencies. 

This framework is achieved by incorporating feedforward 

and backward Kalman filters into GMR to estimate the 

time-dependent label distribution that reflects the emotion 

uncertainty. It also provides the benefits of relaxing the label 

distribution of Gaussian assumption to that of a Gaussian 

Mixture Model (GMM). In addition, a new measurement to 

estimate emotion uncertainty from GMM as the local varia-

bility is adopted. Experiments conducted on the RECOLA 

database reveal that incorporating temporal dependencies is 

critical for emotion uncertainty prediction with 17% relative 

improvement for arousal, and that the proposed framework 

for emotion uncertainty prediction shows potential in con-

ventional emotion attribute prediction. 

 

Index Terms— continuous emotion prediction, inter-

rater variability, Kalman filter, uncertainty, Gaussian Mix-

ture Regression, probabilistic uncertainty volume 

 

1. INTRODUCTION 

 

Predicting emotion from speech signals in terms of several 

affective attributes (i.e. arousal, valence) has attracted in-

creasing interest in the last few decades. Conventional 

speech based emotion prediction systems aim to develop a 

regression model that captures the relationship between fea-

tures extracted from speech and affective attributes. These 

attributes are generally annotated by several raters and the 

‘ground truth’ is typically assumed to be the average or 

weighted average among multiple raters. However, discrep-

ancy between raters is ignored though it may carry some 

informative insights.  

Several studies [1-5] have showed the importance of tak-

ing information from multiple raters into account. It is 

claimed that hard labels may not be able to model natural 

emotion variability [1, 3]. In addition, inter-rater variability 

represented by the standard deviation among raters has been 

considered in a multi-task system [4, 5], and was proven to 

be beneficial for emotion prediction system. Our previous 

work [6] developed a multi-rater GMR that incorporated 

multi-rater information to predict emotion uncertainty, un-

der the assumption that multi-ratings reflect the uncertainty 

of speech frames. However, these methods all assumed that 

label distribution obtained from multi-raters is a single 

Gaussian, which may not always be true in reality. Though 

our work [6] estimated the label distribution as a GMM, 

final estimation was still carried out by taking the dominant 

Gaussian mixture component of GMM.  

While most studies investigated emotions’ evolving na-

ture in terms of hard labels of emotion attributes, only lim-

ited literature has taken the temporal dependencies of the 

emotion uncertainty prediction into account. Long Short-

Term Memory-Neural Networks [7, 8] and Output-associate 

Relevance Vector Machines [9, 10] are the two most widely 

adopted techniques in emotion prediction that do take into 

account the emotion temporal dependencies of hard labels. 

However, they cannot be directly used to explore the tem-

poral dependencies of the emotion uncertainty, since the 

uncertainty is generally captured by a distribution. Thus 

exploring the temporal dependencies of emotion uncertainty 

aims to reveal the evolving process of label distributions.   

This paper proposes a dynamic multi-rater GMR taking 

into account the temporal dependencies of the emotion un-

certainty prediction. The main contributions of this paper 

are: (1) incorporation of both feedforward and backward 

Kalman filters into multi-rater GMR to account for the tem-

poral dependencies of label distributions; (2) estimating 

label distribution as a GMM instead of single Gaussian as-

sumption; (3) adoption of a new measurement to estimate 

uncertainty prediction from GMM by the probabilistic un-

certainty volume. 

 

2. RELATED WORK 

Only a limited number of papers have considered emotion 

uncertainty prediction, and even fewer studies have consid-
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ered temporal dependencies of emotion uncertainty predic-

tion. Kalman filters are one of the most widely adopted 

technique in time series analysis [11]. They have been ex-

plored as a multi-modal or multi-subsystem fusion tech-

nique in emotion prediction in recent years, since they are 

ideally suited for continuous state tracking. Good perfor-

mance for predicting arousal and valence was observed [12-

14]. However, this was only carried out for hard labels of 

emotion attributes. The work presented here explores the 

temporal dependencies of emotion uncertainty using Kal-

man filters, which are applied to the emotion label distribu-

tions instead of hard labels of emotion attributes. The feed-

forward and backward Kalman filters are adopted to take 

into account both the past and future information. 

In addition, we assume the emotion label distribution as 

a GMM instead of single Gaussian distribution, which ap-

proaches the problem more realistically.  Based on this as-

sumption, a measurement to estimate the uncertainty predic-

tion from GMM is required. It is supposed that a broad 

GMM indicates a high uncertainty prediction corresponding 

to high disagreement among multiple raters and vice versa. 

Therefore the broadness of the GMM referred as probabilis-

tic uncertainty volume (PUV), which measures the local 

variability of the GMM, is utilized as the uncertainty predic-

tion. The PUV is identical to the probabilistic acoustic vol-

ume proposed in [15, 16]. To the best of the author’s 

knowledge, this is the first paper to incorporate the temporal 

dependencies of emotion uncertainty prediction, and to 

adopt PUV to estimate the emotion uncertainty.  

 

3. DYNAMIC MULTI-RATER GMR 

 

3.1. Multi-rater GMR 

 

The overall distribution of the inter-rater variability is prov-

en to reflect the uncertainty of speech frames based on our 

previous multi-rater GMR [6]. It incorporates multi-rater 

variability in the feature concatenation level, and a GMR is 

developed to capture the label variability.  

In order to obtain the uncertainty prediction for test 

speech, the conditional distribution 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆)of label 𝒚𝑡 

for each frame 𝑡 is estimated as a GMM, where 𝜆 represents 

the joint model. An approximation with the dominant mix-

ture component of 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) is adopted, as shown in Fig-

ures 1(a) and 1(b). Figure 1(a) displays the ratings from 6 

raters of one speech segment. Figure 1(b) shows the predic-

tion 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) approximated as a Gaussian distribution for 

each frame. This allows for a time-varying indicator of un-

certainty prediction as the standard deviation of each frame- 

wise Gaussian distribution. It is expected that a small stand-

ard deviation reflects a low inter-rater variability.   

 

3.2. Incorporating temporal dependencies of uncertainty 

 

Emotion uncertainty is generally captured by a distribution, 

thus incorporating the temporal dependencies of emotion 

uncertainty is modelled as an evolving process of label dis-

tributions 𝑃(𝒚𝑡) . Kalman filters are used to estimate the 

hidden state  𝑃(𝒚𝑡) based on the previous states 𝑃(𝒚1:𝑡−1) 

and current observation which is adopted as the predicted 

conditional distribution (𝒚𝑡|𝒙𝑡 , 𝜆) , serving as a noisy ob-

servation of 𝑃(𝒚𝑡). This framework also provides the flexi-

bility of the assumption on label distribution. Instead of ap-

proximating the 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) and 𝑃(𝒚𝑡) by Gaussian distri-

bution, the proposed dynamic multi-rater GMR treats 

𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) and 𝑃(𝒚𝑡) as GMM. The vector representation 

𝒗𝑡 of 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆) and 𝒔𝑡 of 𝑃(𝒚𝑡) can be generated by con-

catenating their GMM parameter weights 𝑤̅𝑚𝑡/𝑤𝑚𝑡, means 

𝒖̅𝑚𝑡/𝒖𝑚𝑡 and vectored covariance 𝜮̅𝑚𝑡/𝜮𝑚𝑡 of each mixture 

component 𝑚 respectively:  

𝒗𝑡 = [𝑤̅1𝑡 , ⋯ 𝑤̅𝑀1𝑡, 𝒖̅1𝑡
𝑇 , ⋯ 𝒖̅𝑀1𝑡

𝑇 , 𝑉𝑒𝑐(𝚺̅1𝑡), ⋯ 𝑉𝑒𝑐(𝚺̅𝑀1𝑡)]𝑇 (1) 

𝒔𝑡 = [𝑤1𝑡 , ⋯ 𝑤𝑀2𝑡, 𝒖1𝑡
𝑇 , ⋯ 𝒖𝑀2𝑡

𝑇 , 𝑉𝑒𝑐(𝚺1𝑡), ⋯ 𝑉𝑒𝑐(𝚺𝑀2𝑡)]𝑇  (2) 

where 𝑀1 and 𝑀2 represents the number of mixture compo-

nents for 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆)  and 𝑃(𝒚𝑡). Prediction of the hidden 

states 𝒔𝑡 can be formulated as a Kalman filter: 

𝑃(𝒔𝑡|𝒔𝑡−1) = 𝑁(𝒔𝑡;  𝑭𝒔𝑡−1, 𝑸) (3) 

𝑃(𝒗𝑡|𝒔𝑡) = 𝑁(𝒗𝑡;  𝑯𝒔𝑡, 𝑹) (4) 

where matrices 𝑭, 𝑯, 𝑸 and 𝑹 are the process matrix, obser-

vation matrix, process noise covariance and observation 

noise covariance, which can be estimated during the training 

phase. The label distribution 𝒔𝑡 can be updated sequentially 

based on equations (3) and (4). An illustration of the pro-

posed dynamic multi-rater GMR is shown in Figure 1(c). 

The Kalman filter guarantees that the hidden state 𝒔𝑡 is de-

pendent on previous states, which reduces the negative ef-

(a) 

(b) 

 
(c) 

Figure 1: Comparison of multi-rater GMR and dynamic multi-

rater GMR; (a) 6 ratings for one speech segment; (b) multi-rater 

GMR based prediction 𝑷(𝒚𝒕|𝒙𝒕, 𝝀); (c) proposed dynamic multi-

rater GMR based prediction 𝑷(𝒚𝒕). 

 

 

 

 

Fig. 6. System overview 
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fect of sudden misleading frames. It should be noted that the 

Kalman filter is utilized to predict the label distribution 𝒔𝑡 

instead of hard labels. The uncertainty prediction can be 

estimated based on the label distribution  𝒔𝑡 , namely, 𝑃(𝒚𝑡). 

 

3.2.1. Training phase 

 

As in [6], a joint GMM 𝜆 = 𝑃(𝒙, 𝒚) is developed and the 

prediction 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆)  is estimated using validation parti-

tion. Here 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆), represented as 𝒗𝑡, is regarded as the 

noisy observation of the hidden states 𝒔𝑡. 𝒔𝑡  and 𝒗𝑡  are re-

quired to train the Kalman matrices 𝑭, 𝑯, 𝑸 and 𝑹. Ideally, 

𝒔𝑡  can be trained directly using the labels from multiple 

raters at each frame 𝑡. However, there are generally a lim-

ited number of raters in existing databases (i.e. 3 or 6), thus 

it is not reliable to directly train 𝒔𝑡 as a GMM. Maximum-a-

posterior adaptation is used to obtain 𝒔𝑡 based on a Univer-

sal Background Model trained using all labels in the training 

partition. 𝒗𝑡 can be obtained by predicting 𝑃(𝒚𝑡|𝒙𝑡 , 𝜆). 

Given 𝒗𝑡  and 𝒔𝑡 , the matrices 𝑭, 𝑯, 𝑸  and 𝑹  of the 

Kalman filter can be estimated as [17]. As suggested by 

[14], introducing an internal delay 𝑑  during estimation of 

the process matrix 𝑭  benefits emotion prediction systems 

since 𝑭 cannot be an identity matrix. This is owing to the 

fact that emotion is a slowly changing process where two 

adjacent frames are extremely similar.  Let 𝑨 = (𝒔1:𝑡−1−𝑑)𝑇 

and 𝑩 = (𝒔𝑑+1:𝑡)𝑇, 𝑭 and 𝑸 can be estimated as: 

𝑭 = (𝑨𝑻𝑨 + 𝜆𝑰)−1𝑨𝑻𝑩 (5) 

𝑸 = 𝑐𝑜𝑣(𝑩 − 𝑨𝑭) (6) 

where 𝜆  can be determined experimentally. Similarly, let 

𝑪 = (𝒔1:𝑡)𝑇 and 𝑫 = (𝒗1:𝑡)𝑇. 𝑯 and 𝑹 can be estimated as: 

𝑯 = (𝑪𝑻𝑪 + 𝜆𝑰)−1𝑪𝑻𝑫 
(7) 

𝑹 = 𝑐𝑜𝑣(𝑫 − 𝑪𝑯) (8) 

 

3.2.2 Test phase 

 

During the test phase, the predicted label distribution 𝒗𝑡 is 

estimated. Initial values of the hidden states 𝒔0 and the co-

variance 𝑸0  are given and the Kalman filter is applied to 

predict the hidden states 𝒔̂𝑡  sequentially given 𝒗𝑡  and the 

Kalman matrices. The algorithm used to estimate hidden 

states 𝒔̂𝑡 can be found in [17]. Finally, the predicted distri-

bution 𝑃(𝒚̂𝑡) can be reconstructed by decomposing 𝒔̂𝑡  into 

GMM parameters, and emotion uncertainty can be obtained. 

 

3.2.3. Feedforward and backward Kalman filters  

 

Since the Kalman filter only considers the temporal depend-

encies on the past information, two Kalman filters, one 

trained in the feedforward direction (KF1), and another in 

the backward direction (KF2) are proposed to consider the 

temporal dependencies of both past and future information. 

During the test phase, the label distribution 𝒔̂𝑡
𝐾𝐹1  and 

𝒔̂𝑡
𝐾𝐹2  were estimated using KF1 and KF2 respectively. A 

linear combination of 𝒔̂𝑡
𝐾𝐹1  and  𝒔̂𝑡

𝐾𝐹2  is used as the final 

estimation 𝒔̂𝑡 in (9), where the linear coefficient 𝛼 was de-

termined experimentally in training phase by equation (10). 

𝒔̂𝑡 = 𝛼𝒔𝑡
𝐾𝐹1 + (1 − 𝛼)𝒔𝑡

𝐾𝐹2 
(9) 

𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼

‖𝒔𝑡 − 𝒔̂𝑡‖2 (10) 

  

3.3. Uncertainty prediction 

 

Uncertainty in predictions are estimated as the probabilistic 

uncertainty volume 𝑃𝑈𝑉𝑡̂ of 𝒔̂𝑡. Figure 2 illustrates the pre-

dicted label distribution 𝑃(𝒚̂1) and 𝑃(𝒚̂2) for time 𝑡1 and 𝑡2. 

Given a threshold 𝜃, the 𝑃𝑈𝑉𝑡
̂  of 𝑃(𝒚̂𝑡) is the red area:  

𝑃𝑈𝑉𝑡 = ∫ 𝑓(𝒚)𝑑𝒚,   𝑓(𝒚) = {
1,   𝑃(𝒚𝑡) > 𝜃
0,   𝑃(𝒚𝑡) ≤ 𝜃

 (11) 

As shown in Figure 2, 𝑃𝑈𝑉1̂ for a broad GMM is larger than 

𝑃𝑈𝑉2̂ for a narrow GMM. This is expected to correspond to 

two frames with high and low inter-rater variability respec-

tively. The inter-rater variability is similarly estimated as the 

𝑃𝑈𝑉𝑡 of ‘ground truth’ 𝑃(𝒚𝑡) . The correlation between the 

predicted 𝑃𝑈𝑉𝑡̂ and 𝑃𝑈𝑉𝑡 is adopted as the evaluation metric.  

 

4. EXPERIMENTAL RESULTS 

 

4.1. Database  

 

The RECOLA database [18] is a multimodal database in 

French containing audio, video and physiological signals. 

Speech data from 18 speakers was equally divided into 

training and development partitions, which is identical to the 

partitions used in the Audio-Visual Emotion Recognition 

Challenge (AV+EC 2016) [19]. The annotation was per-

formed by six raters for arousal and valence.  

 

4.2. Experimental settings  

 

65 low-level descriptors and their first-order derivatives are 

extracted using Opensmile [20, 21]. Five functionals are 

used to calculate the statistic features [6]. Dynamic features 

and labels are calculated as in [22]. PCA is used to conduct 

dimensionality reduction in the feature space from 650 to 40 

dimensions [6]. Delays of 4s for arousal and 2s for valence 

are applied. GMMs with 2, 4 and 8 full covariance mixture 

components were tested to model 𝑃(𝒚𝑡) and GMMs with 8 

mixture components were found to be the most suitable, 

consistent with our previous findings, and are used for the 

joint distribution 𝜆 [6]. 

-1                     0                   1 -1                     0                   1
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Figure 2: Probabilistic uncertainty volume (𝑷𝑼𝑽) of two distribu-

tions 𝑷(𝒚𝟏) and 𝑷(𝒚𝟐). Red area under threshold θ is the 𝑷𝑼𝑽. 
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Internal delays of 1, 3, 5, 7, and 9 seconds have been 

tested for the Kalman filter. The fusion coefficients 𝛼 for 

these filters are tested in the range of [0,1] with a step in-

crease of 0.1. A regularization term for the filters is opti-

mized in the range [10−10, 105]. 𝑃𝑈𝑉𝑡 is estimated by sam-

pling 100000 points based on Monte-Carlo approach. The 

threshold used to estimate probabilistic uncertainty volume 

of the 𝑃(𝒚𝑡) over the entire test partition, is optimized in the 

range of [1,99] percentiles with a step increase of 2.  

All the experiments are trained and validated using the 

9 speakers in the training partitions, and evaluated using the 

development dataset. Additionally to estimate whether the 

predicted distribution matches the true distribution, Kull-

back-Leibler (KL) divergence is numerically estimated as in 

[23], and the mean and standard deviation of the KL diver-

gence over entire validation partition are reported. 

 

4.3. Analysis of uncertainty prediction 

 

Given the assumption that high inter-rater variability pro-

duces a high uncertainty prediction, we aim to investigate 

the positive correlation between the predicted uncertainty 

𝑃𝑈𝑉𝑡̂ computed from Kalman prediction 𝑃(𝒚̂𝑡), and the mul-

ti-rater uncertainty 𝑃𝑈𝑉𝑡  computed from 𝑃(𝒚𝑡)  obtained 

using test labels only. A moving average filter was used to 

smooth the uncertainty prediction. It was observed that the 

‘ground truth’ 𝑃𝑈𝑉𝑡  is noisy, which may affect the final 

evaluation. Thus we additionally apply a mean filter with 

0.5, 1, and 1.5 seconds to smooth 𝑃𝑈𝑉𝑡  but not to over 

smooth the ‘ground truth’. The results are shown in Figure 3. 

It can be observed that the proposed method already 

outperforms the baseline with raw 𝑃𝑈𝑉𝑡 , for both arousal 

and valence, suggesting that incorporating temporal depend-

encies benefits uncertainty prediction, especially for valence. 

With the increasing smoothing range, the system perfor-

mance was further improved. No significant performance 

difference was observed when using different mixture com-

ponents to model 𝑃(𝒚𝑡) for arousal, while the model with 8 

mixtures outperforms all other configurations for valence, 

suggesting that predicting valence uncertainty from speech 

is a more complex problem. Surprisingly, the internal delays 

of the Kalman filter were not shown to be an influencing 

factor in uncertainty prediction, which is possibly owing to 

the complex representations of model parameters. Addition-

ally the KL divergence between ground truth (modelled as a 

GMM) and predicted label distributions, 𝑃(𝒚̂𝑡), for the pro-

posed systems was compared to that of baseline [6] and the 

results given in Table 1, indicate that the proposed system 

leads to more reliable and smoothed distribution prediction. 

We also compared the system performance using a sin-

gle feedforward and bidirectional Kalman filters under the 

optimal system configurations. Bidirectional Kalman filters 

showed a slightly better performance of 0.665 over 0.662, 

and 0.383 over 0.381 for arousal and valence respectively. 

The optimal fusion coefficient 𝛼 was found to be 0.5, sug-

gesting an equal influence of each directional filter.  

In order to investigate the effectiveness of the proposed 

framework for emotion hard label prediction, the arousal 

predictions are also estimated from 𝑃(𝒚̂𝑡) by the expecta-

tion–maximization algorithm [24]. The performance for 

arousal prediction achieves 0.70 and 0.43 in terms of CC 

and Concordance CC respectively, which is calculated be-

tween predicted 𝒚̂𝑡  and the mean ratings. Though it could 

not outperform the state-of-the-art arousal prediction system 

with CCC of 0.796 [19], it still shows potential in predicting 

emotion attributes without directly using mean ratings. It 

should also be noted that these measures of CC and CCC 

compared to mean ratings completely ignore uncertainty in 

emotion labels. 
 

5. CONCLUSION 
 

This paper proposes a dynamic multi-rater GMR to predict 

emotion uncertainty by considering the temporal dependen-

cies, which is achieved by applying Kalman filters to the 

label distributions. The uncertainty predictions are estimated 

as the probabilistic uncertainty volume of the label distribu-

tion. The results indicate a 17% relative improvement in 

arousal uncertainty prediction by incorporating temporal 

dynamics. This also doubles the baseline performance for 

valence uncertainty prediction. As a pioneering study on the 

temporal dependencies of emotion uncertainty, this paper 

provides insights into the time-dependent variability intro-

duced by multi-raters. Future work will focus on the non-

linear Kalman filters which relax the assumption of the line-

ally evolving emotion uncertainty. 

 
(a) arousal 

(b) valence 

Figure 3 : Uncertainty prediction performance in terms of correla-

tion coefficient (CC) with x axis indicating the mixture compo-

nents of 𝑃(𝒚𝑡). Baseline refers to [6]. Proposed means evaluation 

on raw 𝑃𝑈𝑉𝑡. Smoothing means evaluation on smoothed 𝑃𝑈𝑉𝑡.  

Table 1: Comparison of mean and standard deviation (SD) of KL 

 Arousal Valence 

 Proposed Baseline Proposed Baseline 

Mean 0.1439 1.6872 0.2085 1.8628 

SD 0.1818 7.2714 0.2044 1.1236 

 

 

0

0.5

2 mix 4 mix 8 mix

Baseline

Proposed

0.5s smoothing

 1s smoothing

1.5s smoothing

0

0.2

0.4

2 mix 4 mix 8 mix

Baseline

Proposed

0.5s smoothing

 1s smoothing

1.5s smoothing

4932



REFERENCES 
 

[1] E. Mower et al., "Interpreting ambiguous emotional 

expressions," in Affective Computing and Intelligent Interaction 

and Workshops, 2009. ACII 2009. 3rd International Conference on, 

2009, pp. 1-8: IEEE. 

 

[2] F. Ringeval et al., "Prediction of asynchronous dimensional 

emotion ratings from audiovisual and physiological data," Pattern 

Recognition Letters, vol. 66, pp. 22-30, 2015. 

 

[3] R. Lotfian and C. Busso, "Retrieving Categorical Emotions 

Using a Probabilistic Framework to Define Preference Learning 

Samples," in INTERSPEECH, 2016, pp. 490-494. 

 

[4] F. Eyben, M. Wöllmer, and B. Schuller, "A multitask approach 

to continuous five-dimensional affect sensing in natural speech," 

ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 2, 

no. 1, p. 6, 2012. 

 

[5] J. Han, Z. Zhang, M. Schmitt, M. Pantic, and B. Schuller, 

"From Hard to Soft: Towards more Human-like Emotion 

Recognition by Modelling the Perception Uncertainty," presented 

at the ACM MM 2017, Mountain View, 2017.  

 

[6] T. Dang, V. Sethu, J. Epps, and E. Ambikairajah, "An 

Investigation of Emotion Prediction Uncertainty Using Gaussian 

Mixture Regression," Proc. Interspeech 2017, pp. 1248-1252, 2017. 

 

[7] M. Wöllmer, M. Kaiser, F. Eyben, B. Schuller, and G. Rigoll, 

"LSTM-Modeling of continuous emotions in an audiovisual affect 

recognition framework," Image and Vision Computing, vol. 31, no. 

2, pp. 153-163, 2013. 

 

[8] M. Wollmer, B. Schuller, F. Eyben, and G. Rigoll, "Combining 

long short-term memory and dynamic bayesian networks for 

incremental emotion-sensitive artificial listening," IEEE Journal of 

Selected Topics in Signal Processing, vol. 4, no. 5, pp. 867-881, 

2010. 

 

[9] Z. Huang et al., "An investigation of annotation delay 

compensation and output-associative fusion for multimodal 

continuous emotion prediction," in Proceedings of the 5th 

International Workshop on Audio/Visual Emotion Challenge, 2015, 

pp. 41-48: ACM. 

 

[10] A. Manandhar, K. D. Morton, P. A. Torrione, and L. M. 

Collins, "Multivariate Output-Associative RVM for Multi-

Dimensional Affect Predictions," World Academy of Science, 

Engineering and Technology, International Journal of Computer, 

Electrical, Automation, Control and Information Engineering, vol. 

10, no. 3, pp. 461-468, 2016. 

 

[11] M. S. Grewal, "Kalman filtering," in International 

Encyclopedia of Statistical Science: Springer, 2011, pp. 705-708. 

 

[12] K. Somandepalli, R. Gupta, M. Nasir, B. M. Booth, S. Lee, 

and S. S. Narayanan, "Online Affect Tracking with Multimodal 

Kalman Filters," in Proceedings of the 6th International Workshop 

on Audio/Visual Emotion Challenge, 2016, pp. 59-66: ACM. 

 

[13] K. Brady et al., "Multi-Modal Audio, Video and Physiological 

Sensor Learning for Continuous Emotion Prediction," in 

Proceedings of the 6th International Workshop on Audio/Visual 

Emotion Challenge, 2016, pp. 97-104: ACM. 

 

[14] Z. Huang and J. Epps, "An Investigation of Emotion 

Dynamics and Kalman Filtering for Speech-based Emotion 

Prediction," Proc. Interspeech 2017, pp. 3301-3305, 2017. 

 

[15] N. Cummins, V. Sethu, J. Epps, and J. Krajewski, 

"Probabilistic acoustic volume analysis for speech affected by 

depression," in INTERSPEECH, 2014, pp. 1238-1242. 

 

[16] N. Cummins, V. Sethu, J. Epps, S. Schnieder, and J. 

Krajewski, "Analysis of acoustic space variability in speech 

affected by depression," Speech Communication, vol. 75, pp. 27-49, 

2015. 

 

[17] M. Oveneke, I. Gonzalez, V. Enescu, D. Jiang, and H. Sahli, 

"Leveraging the Bayesian Filtering Paradigm for Vision-Based 

Facial Affective State Estimation," IEEE Transactions on Affective 

Computing, 2017. 

 

[18] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, 

"Introducing the RECOLA multimodal corpus of remote 

collaborative and affective interactions," in Automatic Face and 

Gesture Recognition (FG), 2013 10th IEEE International 

Conference and Workshops on, 2013, pp. 1-8: IEEE. 

 

[19] M. Valstar et al., "Avec 2016: Depression, mood, and emotion 

recognition workshop and challenge," in Proceedings of the 6th 

International Workshop on Audio/Visual Emotion Challenge, 2016, 

pp. 3-10: ACM. 

 

[20] F. Eyben, M. Wöllmer, and B. Schuller, "Opensmile: the 

munich versatile and fast open-source audio feature extractor," in 

Proceedings of the 18th ACM international conference on 

Multimedia, 2010, pp. 1459-1462: ACM. 

 

[21] B. Schuller et al., "The INTERSPEECH 2013 computational 

paralinguistics challenge: social signals, conflict, emotion, autism," 

2013. 

 

[22] A. Metallinou, A. Katsamanis, Y. Wang, and S. Narayanan, 

"Tracking changes in continuous emotion states using body 

language and prosodic cues," in Acoustics, Speech and Signal 

Processing (ICASSP), 2011 IEEE International Conference on, 

2011, pp. 2288-2291: IEEE. 

 

[23] V. Sethu, J. Epps, and E. Ambikairajah, "Speaker variability 

in speech based emotion models-Analysis and normalisation," in 

Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE 

International Conference on, 2013, pp. 7522-7526: IEEE. 

 

[24] T. Toda, A. W. Black, and K. Tokuda, "Voice conversion 

based on maximum-likelihood estimation of spectral parameter 

trajectory," IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 15, no. 8, pp. 2222-2235, 2007. 

 

4933


