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ABSTRACT

When producing speech-to-text (STT) systems on a lower
resource language, it is often beneficial to use knowledge ob-
tained from a significantly larger multilingual dataset. We
have seen benefits from using a multilingual TDNN as initial-
ization for training an acoustic model on a target low resource
language. In this work, we expand upon recent research that
found benefits from applying sequential low-rank factoriza-
tion (LRF) by extending it to a TDNN acoustic model trained
on a large multilingual corpus. We also examine and opti-
mize the knowledge transfer methodology, with the goal of
avoiding the loss of useful information from the multilingual
initialization during the knowledge transfer process. Our ap-
proach limits the updates to the multilingual network param-
eters during lattice-free maximum mutual information (LF-
MMI) training on the target low resource language by fixing
the multilingual network parameters and only optimizing the
target output layer. The multilingual parameters and new out-
put layer are jointly optimized using the state-level minimum
Bayes risk (sMBR) objective function. By combining sequen-
tial LRF with this optimization method, we show across low
resource target languages an average absolute WER reduc-
tion of 1.2%, yielding a better result than our previous best
approach.

Index Terms— speech recognition, multilingual training

1. INTRODUCTION

Multilingual knowledge transfer has long been a focus in im-
proving speech-to-text (STT) systems on lower resource lan-
guages, especially as the field has transitioned to focus on
neural networks [1][2][3][4][5][6][7]. Multilingual training
can be thought of as an approach to initialization or pretrain-
ing. When the amount of data is limited, this is especially im-
portant [8][9]. When the acoustic training data is not limited
to a single target language, the amount of the data can be arbi-
trarily large. Given the large amount of multilingual training
data, more sophisticated acoustic models can potentially be
used. However, this leads to an optimization problem when
all of the model parameters are updated based on the limited
amount of data in the target language. One solution is to limit

the use of the multilingual training data to a bottleneck feature
extractor [10].

An alternative approach is to reduce the number of pa-
rameters in the acoustic model. Many of these methods are
based on low-rank factorization (LRF), such as singular value
decomposition (SVD). Sahraeian and Van Compernolle [11]
have recently shown that LRF can be applied in a sequential
manner during the training of a multilingual model, reduc-
ing the number of parameters that need to be updated dur-
ing knowledge transfer. They demonstrated that the size of
the acoustic model could be significantly reduced while also
improving word error rate (WER) on a small dataset of read
speech. We extend their technique to a larger conversational
telephone speech (CTS) dataset with more than an order of
magnitude more multilingual training data. Instead of the
traditional feed-forward deep neural network (DNN) acous-
tic model, we use a time-delay neural network (TDNN) [12]
with frame subsampling trained using lattice-free MMI (LF-
MMI) [13]. We demonstrate that the technique works on the
larger, more difficult dataset using more a more sophisticated
acoustic model.

We also perform a more systematic analysis of the opti-
mization process. The typical approach is to update all pa-
rameters of the network using a reduced learning rate. We
find that only updating the final output layer produces better
results. Further gains are obtained by then updating all pa-
rameters during sequence training.

In Section 2, we describe our multilingual neural network
setup and explain the knowledge transfer process. Section 3
details SVD and a description of the sequential SVD method
adapted from the work by Sahraeian and Van Compernolle. In
Section 4, we discuss our experiments and results, including
the motivation for output layer only LF-MMI optimization,
and we present our conclusions in Section 5.

2. MULTILINGUAL TDNN

2.1. Chain TDNN

Recently, BBN has seen a significant amount of success by
using TDNNs for STT systems [14]. Additionally, we have
seen significant improvements in both speed and WER by
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adopting the so-called “chain model” structure [13]. The
chain model contains two key features. It uses a two-state
topology with a single self-loop that allows traversing a given
phone in a single frame. This makes it possible to subsample
the input data, allowing this TDNN to be significantly faster
at decoding time. The other feature of chain models is the use
of lattice-free maximum mutual information (LF-MMI) as a
training criterion instead of the typical cross-entropy train-
ing. By using chain TDNNs, we are able to get very strong
WER results while still running at sub-real time. There have
been recent strides in the use of recurrent neural networks,
such as long short-term memory neural networks (LSTM)
[15], but the run-time decoding of these recurrent networks
is generally much slower than that of the chain TDNN. For
our purposes, we found the chain TDNN to be an appropriate
trade off between decoding speed and word error rate.

2.2. Multilingual training and knowledge transfer

There are numerous ways to leverage data from other lan-
guages in an effort to improve the STT system for a target
language, with the most prominent being the training of a
multilingual bottleneck (BN) feature extractor. In this work
we focused on using the multilingual model as an initializa-
tion to the acoustic model for the low resource language. This
is sometimes referred to as “fine-tuning” or adaptation. The
idea is to train a network on a significant amount of data taken
from various different languages, and then use that network
as an initialization for the target low resource language. In
practice the multilingual model should contain as much data
as possible, though some work has been done on selection of
multilingual data [16]. In our previous work [14], we exam-
ined some of the properties of the multilingual corpus, includ-
ing target language membership in the multilingual training
corpus and channel similarities between the data included. It
seems that, assuming the multilingual corpus contains suffi-
cient data, these do not have a significant effect on the final
results.

The multilingual model is trained with the standard crite-
rion used in training (in our case, LF-MMI) with an output
layer that is simply a combination of all phone states for all
languages. To tune the multilingual network to the target low
resource language, the multilingual output layer is discarded
and a new output layer for the target language is created. The
language-specific output layer is pretrained with a very small
amount of data with the remainder of the network fixed to pro-
duce a viable language-specific output layer. Following this,
the entire network is trained with the LF-MMI criterion with a
smaller learning rate, followed by sMBR training [17] for ad-
ditional sharpening of the model. In tuning the LF-MMI mod-
els, we observed some interesting relationships between the
WERs of the LF-MMI trained models and the sMBR trained
models, which we will describe further in our experiments.

3. SEQUENTIAL LOW RANK FACTORIZATION

3.1. Singular value decomposition

Historically, singular value decomposition (SVD) has been
used in DNNs for parameter reduction. The notion is that
SVD can be used to factorize the DNN’s large matrix of pa-
rameter weights into multiple smaller matrices and thus re-
duce the overall complexity of the model. In our work, we
use SVD as described in [18]. For a given weight matrix A,
we can apply SVD as Equation 1, where Σ is a diagonal ma-
trix containing the singular values of A, and U and V contain
the left and right singular values of A.

Am×n = Um×nΣn×nV T
n×n (1)

Note that this version of SVD in Equation 1 contains no
approximation (and thus no parameter reduction). However,
as noted in [18], much of the information from the singu-
lar values is contained in a subset of the top singular values.
Given this, we can use only the top k singular values and re-
place the equation with the approximation in Equation 2

Am×n ≈ Um×kΣk×kV T
k×k (2)

Additionally, we can consider Nk×k = Σk×kV T
k×k to ef-

fectively replace the original weight matrix Am×n with two
smaller weight matrices, Um×k and Nk×k. Assuming that k
is sufficiently small, this will yield a parameter reduction and
decrease computational complexity.

3.2. Sequential SVD

As observed in [11], using LRF for parameter reduction has
some drawbacks. While it reduces model complexity, replac-
ing parameters of a well-trained model with an approximation
introduces noise. If enough noise is introduced, the model
may not be able to recover with additional training. The goal
of performing LRF is two-fold. LRF will clearly yield pa-
rameter reduction assuming a sufficiently small k, but by in-
troducing the SVD approximation, we have effectively added
noise and perturbed the model. Many methods in DNN train-
ing (such as dropout) involve perturbing the model in an ef-
fort to regularize and avoid overfitting. LRF should produce
a similar effect—by perturbing the model through the LRF
approximation and then retraining, we should improve the ro-
bustness of the model.

We followed a similar approach as in [11], with the goal
of using more data and a more complex model than a feed-
forward DNN. We applied SVD to all hidden layers, begin-
ning with the one closest to the output. After applying SVD
to each layer, we retrained the model with a subset of the data.
Following the factorization and retraining of all hidden layers,
the final post-factorization model was trained again.
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4. EXPERIMENTS

4.1. Experimental setup

For training the multilingual model, we use the same cor-
pus used in [14]. The corpus contains 1560 hours of CTS
data from 11 different languages1. The baseline multilingual
TDNN was trained on 4 epochs of the data with the LF-MMI
criterion, with an initial learning rate of 1 × 10−3 and a fi-
nal learning rate of 1 × 10−4. It was trained with the BBN
Sage toolkit [19], specifically using the integrated Kaldi [20]
portion of the toolkit. The input features used were 40 dimen-
sion high resolution MFCC features for the input frame and
the frames surrounding it, and 100-dimension i-vectors, for
a total input feature vector of size 220. The structure of the
model is the standard chain model as described in [13], and
the data is subsampled to examine 1 out of every 3 frames.
The TDNN structure consisted of 6 hidden layers with 1152
nodes per layer. The splicing configuration for the TDNN is
as follows: {0}, {-1,0,1,2},{-3,0,3},{-3,0,3}, {-6,-3,0}, {0}.
This can be read as each layer containing the splicing of the
layers at a time relative to 0, with 0 being the current frame.
So the first hidden layer uses solely the concatenated input
feature vector, the second hidden layer uses a concatenation
of the first hidden layer outputs at the previous time-step, the
current time-step, and the next two time-steps, and so on.

Performing knowledge transfer from the multilingual
model to the target language is a straightforward process.
The multilingual model is used as an initialization. The out-
put layer is removed and a new output layer is initialized to
the target data with a small, fixed number of minibatches.
Following this, the model is trained with the LF-MMI cri-
terion for 4 epochs on the target language. The LF-MMI
optimization uses a learning rate of 4× 10−5. Following LF-
MMI training, the model is optimized with 4 epochs of sMBR
training using an effective learning rate of 1.25× 10−6.

To show the effects on a multitude of languages, we
chose 4 CTS target language corpora with varying amounts
of data. The target language corpora are as follows: Egyptian
(20hrs), Georgian (50hrs), Turkish (83hrs), and Cantonese
(110hrs). Note that the Turkish and Cantonese corpora are
both included in the multilingual training corpus. However,
as observed in [14], membership in the multilingual corpus
does not seem to affect knowledge transfer optimization.

4.2. Multilingual sequential SVD model

For the model using sequential SVD, we took an initial ver-
sion of our multilingual model that had been trained on 2
epochs of data. For SVD we use k=384, 1

3 of the hidden layer
size of the multilingual model. We began by applying SVD

1The languages and amounts of data for the multilingual corpus are
as follows: English (380hrs), Mandarin (250hrs), Spanish (245hrs), Can-
tonese (110hrs), Pashto (98hrs), Tagalog (90hrs), Vietnamese (90hrs), French
(85hrs), Turkish (83hrs), Haitian (80hrs), Swahili (50hrs)

Table 1: Sequential SVD results compared to the baseline
using both LF-MMI and sMBR models (WER)
Language Model LF-MMI sMBR
Egyptian Baseline 38.0 36.9

Seq. SVD 37.7 36.7
Georgian Baseline 42.7 40.1

Seq. SVD 42.1 39.6
Turkish Baseline 40.5 39.0

Seq. SVD 40.1 38.1
Cantonese Baseline 40.9 39.8

Seq. SVD 40.4 39.0
Average Baseline 40.5 39.0

Seq. SVD 40.1 38.4

between the 5th and 6th hidden layers, and retrained on a por-
tion of the multilingual data. This process was repeated for
subsequent hidden layer weight matrices. We used a larger
subset of the data than was proposed in [11]. We used 2
epochs of data total for sequential SVD, so after each SVD we
retrained the model on 2

5 of the data. After SVD was applied
to all hidden layers the model was trained on 2 further epochs
of the data. It is worth noting that our final sequential SVD
model is trained on 6 epochs of data—2 initial multilingual
LF-MMI epochs, 2 epochs of sequential SVD retraining, and
2 additional epochs of multilingual LF-MMI training follow-
ing the sequential SVD. Our multilingual baseline was trained
with only 4 LF-MMI epochs, but we have observed in prac-
tice that additional training to the baseline does not improve
the multilingual model with regards to knowledge transfer.

Table 1 shows the results comparing the sequential SVD
models with the baseline models across all languages, along
with the average word error rate across all languages. We
report word error rate (WER) using both the LF-MMI models
and the sMBR models. This shows the importance of sMBR
training on top of the standard LF-MMI optimization—even
on the baseline, sMBR accounts for a 1.5% absolute reduction
to WER on average. This also highlights the improvements of
the sequential SVD model, which produces a 0.6% average
absolute WER reduction over the baseline.

4.3. Knowledge transfer optimization

As noted in Section 4.2, we used a constant learning rate of
4×10−5 for LF-MMI optimization, finding that empirically to
yield optimal performance across all languages. In tuning the
learning rate, we observed some interesting results that sup-
ported a change to our standard optimization. Table 2 shows
the comparison between the optimal learning rate and our ini-
tial learning rate prior to tuning of 1×10−4 on Georgian. De-
creasing the learning rate to the optimal value does not neces-
sarily improve the LF-MMI WER significantly—notably, in
the sequential SVD model, moving to the optimal learning
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Table 2: Georgian results from tuning the LF-MMI learning
rate (WER)

Model
LF-MMI

learning rate LF-MMI sMBR

Baseline 1× 10−4 43.4 42.4
4× 10−5 42.7 40.1

Seq. SVD 1× 10−4 42.3 41.3
4× 10−5 42.1 39.6

rate only improves the LF-MMI decoding result by 0.2% ab-
solute. However, the lower learning rate makes the LF-MMI
model a better candidate for improvement with sMBR train-
ing, as it improves the model by 1.7% absolute over the larger
learning rate. The baseline model has a larger gain in LF-
MMI WER, but follows a similar trend—the lower learning
rate improves the final sMBR WER significantly.

Given the results in Table 2, we tried a different approach
to LF-MMI optimization of the target language. It is clear
that optimizing the LF-MMI in different ways can signifi-
cantly improve the final model after sMBR training. We be-
lieve that this is in part due to “catastrophic forgetting” [21],
where a model trained on one task and adapted to a new task
“forgets” how to perform the first task. In this case, optimiz-
ing the model to the target language with LF-MMI causes the
model to forget much of the useful information learned from
multilingual training. Our idea was to use a single epoch of
LF-MMI training solely for optimizing the new output layer,
leaving the multilingual parameters of the network fixed. For
updating the output layer only, we found a much higher learn-
ing rate was necessary, settling on 3 × 10−4. Following this,
sMBR is trained with 4 epochs to optimize the parameters of
the entire network. sMBR training typically uses a very small
effective learning rate (our experiments use 1.25× 10−6) and
should avoid removing too much multilingual information.
sMBR has been shown to be a very effective means of training
on top of other objective functions [17][22], and importantly,
it is a different optimization criterion from the LF-MMI crite-
rion used to train the multilingual model.

Table 3 shows the tuning on the different types of multilin-
gual knowledge transfer optimization described in 4.3. This
includes both sequential SVD models as well as the baseline
models, only reporting the final numbers after sMBR train-
ing. It is clear that across all languages, there is a gain from
doing both output layer only optimization, as well as from se-
quential SVD. Interestingly, though the average absolute re-
duction in WER is 1.2%, it appears as though the languages
with less data (Egyptian and Georgian) benefit less from do-
ing output layer only lattice-free MMI optimization than the
languages with more data. One possibility is that, as noted
before, Turkish and Cantonese are present in the multilingual
training set. While in previous experiments [14] we observed
that this has little effect, it is possible that foregoing all op-

Table 3: Standard LF-MMI optimization compared to
output only LF-MMI optimization with sequential SVD after

sMBR training (WER)

Language Model
Standard

optimization
(lr: 4× 10−5)

Output only
optimization

(lr: 3× 10−4)
Egyptian Baseline 36.9 36.8

Seq. SVD 36.7 36.3
Georgian Baseline 40.1 39.6

Seq. SVD 39.6 39.1
Turkish Baseline 39.0 38.0

Seq. SVD 38.1 37.4
Cantonese Baseline 39.8 38.8

Seq. SVD 39.0 38.3
Average Baseline 39.0 38.3

Seq. SVD 38.4 37.8

timization of the network with the lattice-free MMI criterion
outside of the output layer could make the matching obser-
vations from the multilingual model more significant. These
observations could yield potential insight in future work.

Though not our primary objective, using SVD on neu-
ral network weight matrices gives us the additional benefit
of parameter reduction. The baseline 1152-dimension model
contains approximately 40.1 million parameters. Through se-
quential SVD, we have reduced that number to approximately
28.1 million parameters, a roughly 30% reduction in the total
number of parameters.

5. CONCLUSION

In this work we have demonstrated a few different ways to
optimize multilingual knowledge transfer. The first was to
expand upon the work done in [11], applying it to a larger,
more challenging dataset with a more sophisticated model, in
this case chain TDNN. We observed an absolute 0.6% aver-
age word error rate reduction when using sequential SVD. We
also optimized our use of training with the lattice-free MMI
criterion, applying a single epoch of target language training
and using that solely for training the new output layer. The en-
tire network is then optimized using the sMBR criterion. This
yields an additional 0.6% average absolute WER reduction,
both on the baseline as well as the sequential SVD model,
resulting in an average 1.2% absolute WER reduction when
combining the two approaches.

Our previous work [14] focused on combining the effects
of knowledge transfer optimization with multilingual BN fea-
tures. In that work, our best system produced an average re-
sult of 38.9% WER on the same set of target languages. We
have produced an absolute reduction of WER by 1.1% over
those results, and plan to explore combining this work with
the BN features explored in that research.
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