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ABSTRACT

This paper proposes an adversarial multilingual training to
train bottleneck (BN) networks for the target language. A
parallel shared-exclusive model is also proposed to train
the BN network. Adversarial training is used to ensure
that the shared layers can learn language-invariant features.
Experiments are conducted on IARPA Babel datasets. The
results show that the proposed adversarial multilingual BN
model outperforms the baseline BN model by up to 8.9%
relative word error rate (WER) reduction. The results
also show that the proposed parallel shared-exclusive model
achieves up to 1.7% relative WER reduction when compared
with the stacked share-exclusive model.

Index Terms— Speech recognition, low-resource, deep
neural networks, bottleneck features, adversarial multilingual
training

1. INTRODUCTION

Multilingual training is an effective approach to improve the
performance of automatic speech recognition (ASR) systems
for low-resource languages [1, 2, 3].

Previously, deep neural network (DNN) based acoustic
models trained jointly on several languages are used to train
bottleneck (BN) networks [4, 5]. Sercu et al. [6] propose
to utilize deep convolutional neural networks (CNN) to train
multilingual BN networks. More recently, Hartmann et al.
[7] use very deep CNNs and bi-directional long-short term
memory networks (BLSTM) to train BN feature extractors.
The BN extractors have shared and exclusive layers. The
shared layers are used to learn language-invariant features.
While the exclusive layers are used to capture language-
dependent features. The BN features are extracted from
the shared layers. Previous studies [8, 9, 10] have shown
that acoustic models trained using BN features outperform
models trained only on the target language data, especially
when the amount of labelled data from the target language is

limited. However, the BN shared features may contain some
unnecessary language-specific information.

Inspired by the success of adversarial training on domain
adaptation [11], this paper proposes an adversarial multilin-
gual training to alleviate this problem. A parallel shared-
exclusive model is also proposed to train the BN network
using multitask learning [12]. Adversarial training [13] is
used to ensure that the shared layers can learn language-
invariant features.

Adversarial learning of DNNs is one of the hottest topics
in many tasks recently. Ganin et al. [11] proposed to use
adversarial strategy for domain adaptation in image tasks.
More recently, Chen et al. [14] use adversarial multi-
criteria learning for Chinese word segmentation in text tasks.
Shinohara [15] and Saon et al. [16] utilizes adversarial multi-
task learning for noise robustness and speaker adaptation
respectively. These methods use adversarial multi-task
learning to improve the performance of the primary task. The
results show that they achieve state-of-the-art performance.
However, this paper uses the adversarial learning to train
multilingual BN networks. The BN networks are used to
extract features for the target languages. There has been no
work, to the best of our knowledge, that uses adversarial
multilingual learning for lower-resource speech recognition.

The main contributions of this paper are as follows.
1) A parallel shared-exclusive BN model is proposed to
extract features for the target language. 2) An adversarial
training is used to force the shared layers to learn language-
invariant features. Experiments are conducted on IARPA
Babel datasets. The results show that the proposed adversarial
multilingual BN model outperforms the baseline BN model
by up to 8.9% relative word error rate (WER) reduction. The
results also show that the proposed parallel shared-exclusive
model achieves up to 1.7% relative WER reduction when
compared with the stacked share-exclusive model.

The rest of this paper is organized as follows. Section
2 introduces multilingual bottleneck models. Section 3
describes adversarial training for shared layers. Section 4
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presents the experiments. The results are discussed in Section
5. This paper is concluded in Section 6.

2. MULTILINGUAL BOTTLENECK MODELS

Two conventional DNN based BN models are introduced at
first. Then the proposed BN model is presented. The three
BN models are shown in Fig.1. The BN models are used to
extract BN features for the target languages.

(a) SHL-Model (b) SSE-Model

(c) PSE-Model

Fig. 1. Architectures of DNN based BN models. SHL-Model
and SSE-Model are the conventional BN models. PSE-Model
is the proposed parallel BN model. BN denotes the bottleneck
layer used to extract features. FC denotes the full connected
layer. The labels of the output layer are language-specific
senones.

SHL-Model (shared hidden layers model): The architec-
ture of SHL-Model is widely used for low-resource speech
recognition [17, 18]. The shared layers are hidden layers.
While the exclusive layers are the output layers.

SSE-Model (stacked shared-exclusive model): There are
a few of studies which attempt to extract BN features using
SSE-Model [6]. The shared and exclusive layers of this model
are stacked. They are both hidden layers. The outputs of the
shared layers are the inputs of the exclusive layers.

PSE-Model (parallel shared-exclusive model): None of
the existing studies utilize the PSE-Model to train BN feature
extractors. The shared and exclusive layers of this model are
parallel. The outputs of the shared and exclusive layers are
concatenated as the inputs of the output layers.

Given a dataset with Nm training samples
{x(m)

i , y
(m)
i }Nm

i=1 for the m-th language, where {x(m)
i , y

(m)
i }

is the training samples (frame-level), x(m)
i ∈ Rd is a feature

vector, e.g. filterbank coefficients, d is the dimension of the
feature vector, y(m)

i ∈ {1, ..., C(m)
y } is the senone label,C(m)

y

is the number of senone labels. The multilingual BN model
is trained to minimize the cross-entropy on all the languages.
The loss function of multilingual training can be defined as:

LMul(θ
s, θm) = −

M∑
m=1

Nm∑
i=1

logP (y
(m)
i |x(m)

i ; θs, θm) (1)

where θs denotes the parameters of the shared layers, θm

denotes the parameters of the exclusive layers for the m-th
language, M is the number of all the languages.

3. ADVERSARIAL TRAINING FOR SHARED
LAYERS

In order to learn language-invariant features, the adversarial
training is used to optimize the shared layers of SSE-
Model (Adv-SSE-Model) and PSE-Model (Adv-PSE-Model)
as shown in Fig.2. Thus the shared layers are prevented from
learning the language-specific features.

In adversarial training procedure, a language discrimina-
tor is used to recognize the language label using the shared
features. An additional language label is given for each
training sample {x(m)

i , y
(m)
i ,m}, where m ∈ {1, ...,M}

denotes the language label for each frame, and M is the
number of language labels. The language discriminator loss
function LAdv(θ

s, θa) is defined as:

LAdv(θ
s, θa) = −

M∑
m=1

Nm∑
i=1

logP (m|x(m)
i ; θs, θa) (2)

where θa denotes the parameters of the top sub-network of
the language discriminator.

The gradient reversal layer (GRL) [11, 19] is introduced
to ensure the feature distributions over all the languages are as
indistinguishable as possible for the language discriminator.
Thus the shared layers can learn language-invariant features.
At the feed-forward stage, the GRL acts as an identity
transformation. During the back-propagation, however, the
GRL takes the gradient from the subsequent level and changes
its sign, i.e., multiplying by -1. The GRL has no parameters
associated with it.

Thus, the adversarial multilingual training is to optimize
the above mentioned two loss functions: LMul(θ

s, θm) and
LAdv(θ

s, θa).
The gradient w.r.t. the parameters are computed via back-
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(a) Adv-SSE-Model (b) Adv-PSE-Model

Fig. 2. Adversarial training for shared layers. Adv-SSE-
Model and Adv-PSE-Model denote SSE-Model and PSE-
Model with adversarial training respectively.

propagation, and the parameters are updated as:

θm ← θm − α∂LMul

∂θm
(3)

θa ← θa − αλ∂LAdv

∂θa
(4)

θs ← θs − α(∂LMul

∂θs
− λ∂LAdv

∂θs
) (5)

where α ∈ R is the learning rate, λ ∈ R is the loss weight, λ
is gradually increased from 0 to 1 as epoch increases so that
the model is stably trained [11].

4. EXPERIMENTS

4.1. Datasets

Our experiments are conducted on IARPA Babel datasets.
The Babel datasets consist of conversational telephone speech
for 25 languages collected across a variety of environments.
The total amount of transcribed audio data varies depending
on the language and condition. We select 4 languages
from the datasets as the source languages: Assamese,
Bengali,Kurmanji and Lithuanian. The source languages are
the full language pack (FLP), which are only used to train
the multilingual BN networks. We also select 3 languages
from the datasets as the target languages: Pashto, Turkish,
and Vietnamese. The target languages have the FLP and the
limited language pack (LLP). All results are reported in terms
of word error rate (WER) on 10-hours dev sets for the three
target languages. Table 1 describes data statistics.

4.2. Experimental setup

Our experiments are conducted using Kaldi speech recog-
nition toolkit [20] and TensorFlow [21]. We follow the
officially released Kaldi recipe to build a Gaussian mixture

Table 1. Overall experimental data distributions (hours).

Language (Id) Dataset Training Dev

Source

Assamese (102) FLP 61 10
Bengali (103) FLP 62 10

Kurmanji (205) FLP 41 10
Lithuanian (304) FLP 42 10

Target Pashto (104) FLP 78 10
LLP 10 10

Turkish (105) FLP 77 10
LLP 10 10

Vietnamese (107) FLP 88 10
LLP 11 10

model hidden Markov model (GMM-HMM) at first. The
features are extracted with a 25-ms sliding window with
a 10-ms shift. Input features for the GMM-HMM model
consist of 3-dimensional pitch features and 13-dimensional
MFCC and their delta and delta-delta. We use the GMM-
HMM models to generate frame-level state alignments for
DNN models. All the DNN models use a sliding context
window of 11 consecutive speech frames as inputs. Each
frame is represented by 3-dimensional pitch features and 40-
dimensional log mel-filter bank (Fbank) features plus their
delta and delta-delta.

The four source languages are only used to train BN
models. The size of the BN layer is 40, which is set inspired
by [7]. The BN features are extracted from the BN models
for three target languages respectively. The BN features are
concatenated with Fbank and pitch features to train the DNN
models for the target languages.

The three target languages are utilized to train DNN based
monolingual models. For LLP systems, the DNN models
have 5 hidden layers with 2048 nodes in each layers. For FLP
systems, the DNN models have 6 hidden layers with 2048
nodes in each layer. The 3-gram language model (LM) is
trained using the transcriptions of the training data for each
language. We use the officially released vocabulary from
IARPA Babel datasets. At the decoding stage, decoding is
performed using fully composed 3-gram weighted finite state
transducers.

4.3. Baseline model

At first, we train two models only using Fbank with or without
pitch features. Then we use four source languages to train
two BN models: SHL-Model-5L and SHL-Model-7L. They
denote SHL-Model has 5 hidden layers and 7 hidden layers
respectively. Each layer has 2048 nodes. The results on
the LLP and FLP datasets are listed in Table 2 and Table 3
respectively.

The results show that the models with pitch features
outperform the models without pitch features, especially for
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Table 2. WERs (%) results on dev data for LLP models.
Features Pashto Turkish Vietnamese

Fbank 59.6 58.5 61.9
Fbank+Pitch 59.1 57.9 59.7

SHL-Model-5L 55.6 55.7 59.1
SHL-Model-7L 55.2 55.4 58.9

Table 3. WERs (%) results on dev data for FLP models.
Features Pashto Turkish Vietnamese

Fbank 51.1 47.8 53.1
Fbank+Pitch 50.7 47.3 51.4

SHL-Model-5L 48.8 46.5 51.2
SHL-Model-7L 48.1 46.1 51.1

the Vietnamese language. This is because the Vietnamese is
a tonal language. The results also show that SHL-Model-7L
achieves the best performance. Therefore, SHL-Model-7L is
selected as our baseline BN model.

4.4. Adversarial multilingual BN models

In this group of experiments, we use four source languages
to train two shared-exclusive multilingual BN models and
their adversarial models. The SSE-Model and PSE-Model
both have 5 shared hidden layers and 2 exclusive hidden
layers. Each hidden layer has 2048 nodes. The network
configurations of the Adv-SSE-Model and Adv-PSE-Model
are similar to SSE-Model and PSE-Model respectively. The
only difference is that the adversarial models add the language
discriminator. The results of the models using BN features
concatenated with Fbank and pitch features on the LLP and
FLP datasets are shown in Table 4 and Table 5 respectively.

The results show that all the models with the adversarial
BN features perform better than the models with BN
features. Adv-PSE-Model achieves up to 5.5% relative WER
reduction when compared with PSE-Model on the LLP. PSE-
Model outperforms SSE-Model by up to 1.7% relative WER
reduction. Adv-PSE-Model perform better than Adv-SSE-
Model.

Table 4. WERs (%) results on dev data for LLP models
trained using BN features. Baseline is SHL-Model-7L.

BN models Pashto Turkish Vietnamese
Baseline 55.2 55.4 58.9

SSE-Model 54.1 54.7 58.1
PSE-Model 53.2 53.6 57.4

Adv-SSE-Model 52.6 52.7 57.1
Adv-PSE-Model 50.3 51.5 55.8

Table 5. WERs (%) results on dev data for FLP models
trained using BN features. Baseline is SHL-Model-7L.

BN models Pashto Turkish Vietnamese
Baseline 48.1 46.1 51.1

SSE-Model 47.7 45.8 50.8
PSE-Model 47.2 45.3 50.2

Adv-SSE-Model 46.8 45.0 50.1
Adv-PSE-Model 46.1 44.4 49.5

5. DISCUSSIONS

The above experimental results show that the proposed
adversarial multilingual training is effective. Some interesting
observations are made as follows.

The stacked and parallel shared-exclusive models both
outperform the shared hidden layers models. The main
reason may be that the shared BN features contained mixed
language-specific information when the model only has
shared hidden layers.

The proposed parallel shared-exclusive models outper-
form the stacked share-exclusive models for all the target
languages. The possible reason is that the shared features
contain less language-dependent information when the shared
and exclusive layers are parallel.

The proposed adversarial multilingual BN models per-
form better than multilingual BN models. This is because
the adversarial training makes the shared layers to prevent
from learning the language-specific features. Thus the shared
layers can learn more language-invariant features.

6. CONCLUSIONS

This paper proposes an adversarial multilingual training to
train BN feature extractors for the target languages. A
parallel shared-exclusive model is also proposed to train
the BN network. Adversarial training is used to ensure
that the shared layers can extract language-invariant features.
Experiments are conducted on IARPA Babel datasets. The
results show that the proposed adversarial multilingual BN
model outperforms the baseline BN model by up to 8.9%
relative WER reduction. The results also show that the
proposed parallel shared-exclusive model achieves up to 1.7%
relative WER reduction when compared with the stacked
share-exclusive model. In future work, we plan to train CNN
or BLSTM based adversarial multilingual BN models.
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