
A CORRECTIVE LEARNING APPROACH FOR TEXT-INDEPENDENT SPEAKER
VERIFICATION

Yandong Wen, Tianyan Zhou, Rita Singh∗, Bhiksha Raj

Department of Electrical and Computer Engineering, Carnegie Mellon University
{yandongw,tianyanz,rsingh,bhikshar}@andrew.cmu.edu

ABSTRACT

We present a conceptually plausible approach for text-
independent speaker verification (TISV) which treats speech
recordings as a collection of segments providing incremental
evidence. This approach, called corrective learning, gradu-
ally improves an initial prediction of speaker identity based
on incoming speech and the latest prediction. Specifically,
we propose deep corrective learning networks (CLNets) that
explicitly learn a mapping from a new speech segment and
the current predictions, to a correction. Intuitively, the pre-
dictions eventually converge to the ground truth after several
corrections. Trained on NIST SRE datasets, CLNets out-
perform current CNN and the i-vector baselines. Moreover,
CLNets and i-vectors are complementary, and their fusion
leads to significant performance improvements compared to
what can be achieved by each of them individually.

Index Terms— Speaker verification, deep corrective
learning networks, universal background model, i-vectors

1. INTRODUCTION

Text-independent speaker verification (TISV) continues to be
one of the most active research areas in speech processing [1],
with a wide range of applications, such as access control [2],
surveillance [3, 4], and forensics [5, 6, 7]. The challenge here
is to determine if the speaker in a “test” recording is the same
as that in available prior “enrollment” recording(s).

The key challenge in TISV is to derive an appropriate rep-
resentation for the recording. Current state-of-art solutions
are largely based on Supervectors, which are obtained from
any recording by adapting a Universal background model
(UBM) to fit it best, and concatenating the parameters of the
resultant Gaussian mixture distribution [8]. These Supervec-
tors are then projected into lower-dimensional representations
such as i-vectors through factor analysis [9], or through prob-
abilistic linear discriminant analysis (PLDA) [10], into its
discriminative variant. TISV is then performed through direct
comparisons of the i-vectors or PLDA vectors derived from
the enrollment and test data.

∗This work was funded by Schmidt Sciences, Palo Alto, CA.

A more recent approach to parametrizing entire speech
recordings into feature vectors employs deep neural net-
works. The most effective method analyzes Mel-frequency
spectrographic representations of recordings with a convolu-
tional neural network (CNN) to derive their parametrizations
[11, 12, 13, 14]. Since the size of the output of CNNs varies
with the size (duration) of the input, the outputs of the fi-
nal layer of the CNN are averaged across time to obtain the
desired fixed-length representations. These neural-network
derived representations are then used within a PLDA-based
framework for verification, as described earlier. Unlike
standard PLDA-based representations, which focus on the
distribution of instantaneous spectral characteristics of the
signal and ignore both temporal patterns and local frequency-
patterns, CNNs capture the distribution of spectro-temporal
patterns, effectively deriving more information from the sig-
nal.

However, CNNs too make a simplifying assumption about
the data: longer recordings are implicitly assumed to be just
more samples of input, drawn from a stationary process.
The features derived from the longer recordings are hence
assumed to just be more robust estimates of the statistics
accumulated from the filters of the network. While this is a
perfectly reasonable assumption, we believe that an alternate
perspective may yield better results.

We note that a long speech recording may be viewed as
a collection of shorter segments, each individually provid-
ing evidence about the speaker. The standard approach to
combining evidence from multiple independent inputs is to
average their independent predictions. We however take a
different view. When presented with multiple independently
drawn instances of data, instead of assuming that each new
instance makes an effectively independent prediction for the
class (or feature) that must be averaged with prior predictions,
we claim that each new instance may in fact be used to build
upon the predictions that have already been made, in the form
of incremental corrections to them.

In embodying this philosophy, we propose an alternative
recurrent formalism to analyze independent data instances,
where each new instance makes corrective predictions to
update the predictions made from prior data. We will call
this network formalism deep corrective learning networks

4894978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

(CLNets).
In the setting of TISV, this means that we can now view

each recording as a collection of shorter segments, which can
be analyzed by a CLNet to derive features for the recording.
In the sections that follow we describe the proposed formal-
ism. Section 2 provides the statistical justification for the
model. Section 3 describes our model, and Section 4 explains
how it is applied to the problem of speaker verification.

Experiments described in Section 5 show that our pro-
posed network is able to provide significant gains over both
the conventional i-vector/PLDA framework, and one that is
based on CNN-based features. Further improvements are ob-
tained by combining it with the i-vector based system. More
importantly, as we emphasize in our discussions in Section 6,
the new network formalism also provides auxiliary benefits
such as the ability to identify information-bearing portions of
a test recording.

2. AVERAGING VS. CORRECTIVE LEARNING

Consider a set of class-conditionally independent inputs
x1,x2, · · · ,xN , which are known to have been obtained
from one of M classes Y1, · · · , YM . It is known that all
inputs belong to the same class, but not which one. To de-
termine this, we must perform Bayesian classification. Using
the notation x1:N to represent x1,x2, · · · ,xN :

Ŷ = arg max
Y

P (Y |x1:N)

Typically, this Bayes classifier is computed alternately as

Ŷ = arg max
Y

P (x1:N |Y)P (Y)

= arg max
Y

P (Y)
∏
i

P (xi|Y)

= arg max
Y

logP (Y) +
∑
i

logP (xi|Y) (1)

Both, the computation of a posteriori probabilities and
the classification above may also be incrementally performed.
Let Ŷt be the classification after inputs x1, · · · ,xt are ob-
served. We recall the recursion:

P (Y |x1:t) =
P (Y |x1:t−1)P (xt|Y)

P (xt|x1:t−1)
(2)

Using the notation Lt(Y) = logP (Y |x1:t) we can write

Ŷt = arg max
Y

Lt−1(Y) + ∆L(Y,xt) (3)

where ∆L(Y,xt) = logP (xt|Y).
Now consider how the above classification may be per-

formed using a deep neural network in the conventional
framework: a deep neural network directly computes the a
posteriori probability P (Y |x), or alternately, the logarithm
f(Y,x) = logP (Y |x). Given a set of independent inputs

Fig. 1. Corrective networks

x1, · · · ,xN , there is no direct mechanism for computing
logP (Y |x1:N), unless the network is explicitly trained to
consume N inputs simultaneously and produce the posterior
probability of Y given the combined input.

The usual approach then is to produce N separate es-
timates f(Y,x1), f(Y,x2), · · · , f(Y,xN) and sum them to
compute f(Y,x1:N) = 1

N

∑
i f(Y,xi) = 1

N

∑
i logP (Y |xi).

Classification is then usually performed as

Ŷ = arg max
Y

f(Y,x1:N)

= arg max
Y

1

N

∑
i

f(Y,xi)

However, the above estimate is at best only an approximation,
since although xi, · · · ,xN are class-conditionally indepen-
dent, P (Y |x1:N) 6=

∏
i P (Y |xi)

1/N , as will be immediately
apparent from inspection of Equation 2.

A more appropriate composition is derived from Equation
3. We may instead define two networks, the first to compute
the base prediction f0(Y,x) = L0(Y), and the second to
compute the incremental corrections f(Y,xt) = ∆L(Y,xt).

We can now more accurately perform incremental predic-
tion as

Ŷt = arg max
Y

f0(Y,x1) +

t∑
i=2

f(Y,xi)

Our proposed deep corrective network (CLNet) architecture
builds upon this rather simple principle, with the modifica-
tion that the correction term f(Y,xt) is composed instead as
f(Y, Yt−1,xt), to explicitly represent the fact that the correc-
tive network does not compute a posteriori probabilities for
Y , but rather the log likelihood for Y conditioned on xt, and
that it builds upon our prior (t− 1) beliefs about Y .

3. DEEP CORRECTIVE LEARNING NETWORKS

Figure 1 shows the basic form of the proposed CLNet.
The network consists of two blocks: a first “base” block
f(x;Wb) with network parameters Wb, and a “correction”
block g(y, x;Wc) with parameters Wc. The specific architec-
ture of f() and g() may vary with the problem.

4895

(a) (b) (c)

Conv

input

FC

NLL Loss

Conv

Conv

Conv

Conv

Log

Softmax

correction

hidden Conv

++

+

Conv

input

FC

NLL Loss

Conv

Conv

Conv

Conv

Log

Softmax

speaker
vector

hidden Conv

+

Temporal

AvePool

Conv

input

FC

NLL Loss

Conv

Conv

Conv

Conv

Log

Softmax

speaker
vector

Fig. 2. Illustrations of three architectures for comparison. (a) CNN (b)
RNN (c) CLNets. All networks had 5 convolutional layers, followed by
a Batch Normalization (BN) [15] layer and rectified linear units (ReLU)
[16]activation function. The filter size, stride, and padding are 3 × 3, 2,
and 0, respectively. The number of filters are 4, 16, 64, 256, and 64 from
bottom to top.

The base block takes in an initial input x1 to produce
an initial output y1 = f(x1;Wb). Every subsequent input
xt, t = 2, · · · is passed to a correction block which produces
∆yt = g(yt−1,xt;Wc). The corresponding corrected output
is given by yt = yt−1 + ∆yt.

The outputs yi represent the log posteriors of the classes
and are finally passed through a softmax layer, possibly with
additional intervening layers, to produce the actual class pos-
terior probabilities, Yi.

For any set of inputs, all inputs are assumed to correspond
to the same Y . To train the network we define the loss

L =
∑
t

wtDiv(Y, Yt)

where wt is a weighting term that controls how quickly the
estimate is required to converge with t. In our work we have
set wt = 1. Wb and Wc are trained by backpropagation.

4. CLNETS FOR SPEAKER VERIFICATION

In the context of TISV, we first note that the objective of the
network is not to directly perform verification, but rather to
compute features from the speech signal, which may subse-
quently be used within any other framework (e.g. PLDA) to
perform the actual verification.

Since our approach for speaker verification is similar to
other CNN-based approaches [12, 13], we briefly outline a
standard CNN-based approach here. We represent the speech

signal as a Mel-frequency spectrogram. In the conventional
CNN-based approach, each of the filters in the final layer
of the CNN produces an output at every instant of time (i.e.
for every frame of the spectrogram). These outputs are aver-
aged across time to finally produce a single feature vector for
the complete recording. The training data typically comprise
training instances from many speakers. The CNN is followed
by an additional classification subnet, which accepts the out-
put of the CNN and attempts to distinguish between all the
speakers in the training set. Once trained, the final classifi-
cation subnet is removed to result in a CNN that produces
features that are optimized to distinguish between speakers.

Our CLNet format too follows much of this structure. We
work with Mel spectrographic representations of the speech
signal. However, unlike the regular approach, the speech is
segmented into many sections of K frames each (we set K =
63 in our experiments, although this could be optimized). The
first of these segments is used to produce the base feature,
which is subsequently updated through corrections extracted
from subsequent correction terms.

As in the CNN models, the base and corrective networks
f() and g() are convolutional networks that operate on the
segments. Within each segment the outputs of the final filters
are averaged across the breadth of the segment to obtain either
the base feature (in the case of f()) or the correction terms (in
the case of g()). We extend the basic CLNet format described
in Section 3 by also including the hidden representations in
the correction nets in the recursion.

Thus, denoting the n-th input speech segment and n-th
hidden state as xn and hn, and the corresponding output fea-
ture as yn, CLNets can be formulated as

hn = f(xn,hn−1)

∆yn = g(yn, yn−1)

yn = ∆yn + yn−1

(4)

As in the case of CNNs, the feature is passed into a final clas-
sification subnet to train the network. Once the network is
trained, the final classification subnet is removed.

The entire architecture is illustrated in Figure 2(c). Figure
2 also shows the conventional CNN architecture employed in
TISV (Fig 2(a)), and a conventional LSTM-based recurrent
architecture (Fig 2(b)) which has also been proposed for the
problem of feature extraction for speaker verification.

5. EXPERIMENTS

Experiments were conducted on the NIST SRE corpora, ob-
tained from the Linguistic Data Consortium. For training, we
used the SRE 2004-2008 datasets with ∼36,500 recordings,
each of about 5 minutes, from 3801 speakers. The test set
used was SRE 2010, with 11,959 recordings for enrollment
and 767 recordings for testing. Experiments included evaluat-
ing 416,119 trial pairs of recordings to determine if each pair

4896

was from the same speaker or not. The trial set included 7,169
positive pairs and 408,950 negative pairs of recordings. In
each pair, one utterance was picked from the enrollment set,
and the other from the test set. Further experimental setup-
related details are given below.
i-vector baseline: We implemented an i-vector baseline
using Kaldi [11]. The front-end features consisted of 20-
dimensional Mel Frequency Cepstral Coefficients (MFCCs),
with delta and acceleration features. The MFCCs were de-
rived from 25ms frames shifted by 10ms, and were mean-
normalized over a sliding window of 3 seconds. An energy-
based voice activity detector was used to remove unvoiced
speech segments. The UBM was a 2048-component GMM
with a full covariance matrix. The corresponding supervec-
tors were transformed to 600-dimensional i-vectors that were
length normalized.
CNN and RNN baseline: The CNN and RNN architectures
used are shown in Fig. 2(a) and (b), respectively. The in-
put comprised 63-component log Mel spectrograms. The net-
works were trained via stochastic gradient descent, in mini-
batches of 128 samples, for 120 epochs. The momentum and
weight decay values used were 0.9 and 0.0001 respectively.
The learning rate was initialized at 0.1 and divided by 10
after 70 epochs and again after 100 epochs. While training
the CNNs, all input spectrograms were restricted to 16,383
frames. For RNNs, the spectrograms were processed as a se-
quence of 510 inputs (sections), each 63 frames wide, with a
stride of 32 frames. The test recordings were not restricted
in size. Each recording resulted in a 64-dimensional feature
vector.
CLNets: The architecture of the CLNet used is shown in Fig.
2(c). The number of parameters in the CLNet were the same
as those in the RNN. The training and test settings were ex-
actly the same as those used with RNNs, and the features ex-
tracted from the CLNet were also 64-dimensional. In addi-
tion, we also trained an ensemble of 4 more networks, fusing
the features derived from them into a single 256-dimensional
feature. Finally we fused the ensemble feature and the i-
vectors to obtain a second fused 1,056-dimensional feature.

5.1. Evaluation and results

We evaluated performance on the SRE10 database under two
conditions. In the first condition, entire utterances were used.
The second condition evaluated the effect of changes in recod-
ing duration. For this, the enrollment and testing utterances
were truncated to durations of 10 to 80 seconds, with a granu-
larity of 10 seconds. We computed the match between enroll-
ment and test recordings using cosine similarity and PLDA.
Fig. 3 shows the detection error tradeoff (DET) curves and
equal error rates (EER) achieved for the first condition.

We note that the CLNet outperforms CNN and RNN, both
of which have architectures that are similar and equivalent to
the CLNet used, with both cosine similarity and PLDA mea-
sures, indicating that CLNets are better than both for the full-

 0.1 0.2 0.5 1 2 5 10 20 40

False Alarm probability (in %)

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

M
is

s
 p

ro
b
ab

il
it

y
 (
in

 %
)

I-Vector, EER=7.30%
CNN, EER=5.18%
RNN, EER=8.29%
CLNets, EER=4.87%
4 CLNets, EER=3.68%
Fusion, EER=3.22%

 0.1 0.2 0.5 1 2 5 10 20 40

False Alarm probability (in %)

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

M
is

s
 p

ro
b
ab

il
it

y
 (i

n
 %

)

I-Vector, EER=2.71%
CNN, EER=4.53%
RNN, EER=7.60%
CLNets, EER=4.38%
4 CLNets, EER=2.57%
Fusion, EER=1.79%

(a) (b)

Fig. 3. DET curves and EERs of different approaches. (a) Score is com-
puted by cosine similarity, (b) Score is computed by PLDA.

Fig. 4. EERs associated with increasing numbers of frames

utterance scenario. Secondly, the ensemble of CLNets per-
forms better than the i-vector system, which has long been
the state of art. Moreover, features extracted from CLNets are
complement the i-vectors, as evidenced by the improved per-
formance on fusion of these features. The final EER of 1.79%
improves on the i-vector baseline of 2.71% significantly, with
a relative improvement of 34%.

The second condition, where we vary the duration of the
recordings, yields additional insights. From Fig. 4, it is clear
that with increasing numbers of speech segments (increasing
duration), the CLNet is are able to make more corrections,
leading to lower EERs. With only 10 seconds of speech,
the EERs are 16.18% and 15.48% with cosine similarity and
PLDA metrics, respectively. These errors quickly fall below
5% as the cumulative length of the segments extends to over
80 seconds, eventually saturating.

6. CONCLUSIONS

The proposed correction-based network outperforms all other
approaches. It also converges faster than other methods. Seg-
ments that require zero correction during training are identifi-
able as noisy or non-contributing segments, so the CLNet can
also be an effective automatic noise segmenter for speech sig-
nals. We expect additional improvements through segment-
length optimization, improvements in the training loss func-
tion etc. These are areas of current investigation.

4897

7. REFERENCES

[1] Douglas A Reynolds, “An overview of automatic
speaker recognition technology,” in Acoustics, speech,
and signal processing (ICASSP), 2002 IEEE interna-
tional conference on. IEEE, 2002, vol. 4, pp. IV–4072.
1

[2] Stephane Herman Maes, “Text independent speaker
recognition for transparent command ambiguity resolu-
tion and continuous access control,” June 6 2000, US
Patent 6,073,101. 1

[3] Felix Burkhardt, Richard Huber, and Anton Batliner,
“Application of speaker classification in human machine
dialog systems,” Speaker Classification I, pp. 174–179,
2007. 1

[4] Rita Singh, Abelino Jiménez, and Anders Øland, “Voice
disguise by mimicry: deriving statistical articulometric
evidence to evaluate claimed impersonation,” IET Bio-
metrics, vol. 6, no. 4, pp. 282–289, 2017. 1

[5] Amy Neustein and Hemant A Patil, Forensic speaker
recognition, Springer, 2012. 1

[6] Rita Singh, Bhiksha Raj, and James Baker, “Short-term
analysis for estimating physical parameters of speakers,”
in Biometrics and Forensics (IWBF), 2016 4th Interna-
tional Workshop on. IEEE, 2016, pp. 1–6. 1

[7] Rita Singh, Joseph Keshet, and Eduard Hovy, “Profiling
hoax callers,” in Technologies for Homeland Security
(HST), 2016 IEEE Symposium on. IEEE, 2016, pp. 1–6.
1

[8] William M Campbell, Douglas E Sturim, and Douglas A
Reynolds, “Support vector machines using gmm super-
vectors for speaker verification,” IEEE signal process-
ing letters, vol. 13, no. 5, pp. 308–311, 2006. 1

[9] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Du-
mouchel, and Pierre Ouellet, “Front-end factor analysis
for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp.
788–798, 2011. 1

[10] Simon J D Prince and James H Elder, “Probabilistic lin-
ear discriminant analysis for inferences about identity,”
in Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-
national Conference on. IEEE, 2007, pp. 1–8. 1

[11] David Snyder, Daniel Garcia-Romero, and Daniel
Povey, “Time delay deep neural network-based uni-
versal background models for speaker recognition,”
in Automatic Speech Recognition and Understanding
(ASRU), 2015 IEEE Workshop on. IEEE, 2015, pp. 92–
97. 1, 4

[12] David Snyder, Pegah Ghahremani, Daniel Povey, Daniel
Garcia-Romero, Yishay Carmiel, and Sanjeev Khudan-
pur, “Deep neural network-based speaker embeddings
for end-to-end speaker verification,” in Spoken Lan-
guage Technology Workshop (SLT), 2016 IEEE. IEEE,
2016, pp. 165–170. 1, 3

[13] David Snyder, Daniel Garcia-Romero, Daniel Povey,
and Sanjeev Khudanpur, “Deep neural network embed-
dings for text-independent speaker verification,” Proc.
Interspeech 2017, pp. 999–1003, 2017. 1, 3

[14] Arsha Nagrani, Joon Son Chung, and Andrew Zisser-
man, “Voxceleb: a large-scale speaker identification
dataset,” arXiv preprint arXiv:1706.08612, 2017. 1

[15] Sergey Ioffe and Christian Szegedy, “Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift,” in International Conference on
Machine Learning, 2015, pp. 448–456. 3

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information
processing systems, 2012, pp. 1097–1105. 3

4898

