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ABSTRACT

The i-vector approach to speaker recognition has achieved
good performance when the domain of the evaluation dataset
is similar to that of the training dataset. However, in real-
world applications, there is always a mismatch between the
training and evaluation datasets, that leads to performance
degradation. To address this problem, this paper proposes to
learn the domain-invariant and speaker-discriminative speech
representations via domain adversarial training. Specifi-
cally, with domain adversarial training method, we use a
gradient reversal layer to remove the domain variation and
project the different domain data into the same subspace.
Moreover, we compare the proposed method with other state-
of-the-art unsupervised domain adaptation techniques for
i-vector approach to speaker recognition (e.g. autoencoder
based domain adaptation, inter dataset variability compensa-
tion, dataset-invariant covariance normalization, and so on).
Experiments on 2013 domain adaptation challenge (DAC)
dataset demonstrate that the proposed method is not only
effective in solving the dataset mismatch problem, but also
outperforms the compared unsupervised domain adaptation
methods.

Index Terms— Domain Adversarial Training, Unsuper-
vised Domain Adaptation, Speaker Recognition

1. INTRODUCTION

Conventional approaches of speaker recognition, such as i-
vector [1] usually assume that training and evaluation data
share the same probability distributions or the same feature
space. Unfortunately, this assumption doesn’t hold in many
real-world applications because there is often domain mis-
match between training and evaluation data. To alleviate the
effect of domain mismatch, domain adaptation [2] is seen as
a solution to mitigate the problem. The training and evalua-
tion dataset are related to source domain and target domain,
respectively, for speaker recognition domain adaptation.

∗Lei Xie is the corresponding author.

According to the availability of labels for target domain,
domain adaptation techniques for speaker recognition could
be classified into two categories: supervised domain adapta-
tion and unsupervised domain adaptation.

In supervised domain adaptation, we are given limited la-
beled data from the target domain. In [3], Garcia-Romero et
al. treated within-speaker and between-speaker covariance as
random variables and used maximum a posterior (MAP) to
estimate these parameters conditioned on the target domain
data. Unsupervised domain adaptation refers to the situation
where some unlabelled data from the target domain are pro-
vided. It means that we will face some difficulties in perform-
ing channel compensation techniques (e.g., linear discrimina-
tive analysis (LDA), probabilistic LDA (PLDA) [4], [5]). To
address this issue, three strategies are adopted: (1) the first
method proposes to use clustering techniques to estimate the
speaker labels for unlabelled target domain data firstly, such
as [6], [7], and [8], (2) the second method selects the un-
labelled target and source domain data to estimate the com-
pensation model and compensate the domain mismatch, such
as inter-dataset variability (IDV) [9], inter dataset variability
compensation (IDVC) [10], and dataset-invariant covariance
normalization (DICN) [11], and (3) the third method learns
the domain-invariant space or maps the source domain data
into target domain space and use the mapped source domain
data with its speaker label to train LDA or PLDA. For exam-
ple, Shon et al. [12] proposed the autoencoder based domain
adaptation (AEDA), which combines an autoencoder with a
denoising autoencoder to adapt resource-rich source domain
data to target domain. Then, the transformed source domain
data could be used for PLDA training.

This paper follows the third strategy on the unsupervised
domain adaptation task and proposes to apply domain adver-
sarial training (DAT) [13], [14] to address the domain mis-
match problem. We apply DAT technique to alleviate the i-
vectors mismatch across different domains. Under a multi-
task learning framework [15], the approach jointly learns one
feature extractor and two discriminative classifiers using one
single DNN: the feature extractor is trained to extract domain-
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invariant and speaker-discriminative features. As the main
task, a speaker label predictor predicts speaker labels dur-
ing training. As the second task, a domain classifier dis-
criminates between the source and the target domains during
training. With a gradient reversal layer that removes the do-
main variation, both domain i-vectors are projected into the
same subspace. This approach only needs the labeled train-
ing data from source domain, and unlabeled data from target
domain, so we call it unsupervised domain adaptation. Since
the speaker labels of the source domain data are used to train
the PLDA back-end, the training is carried out as in a mix of
supervised (speaker) and unsupervised (domain) manner.

Besides exploring the effectiveness of DAT on speaker
recognition, this paper also compares the performance of
DAT with other state-of-the-art unsupervised domain adapta-
tion methods. Experimental results on DAC 13 demonstrate
that the proposed DAT method achieves the best performance.
Moreover, compared with other unsupervised adaptation ap-
proaches, we can easily implement the proposed approach by
simply augmenting a common feed-forward network with a
few standard layers and a gradient reversal layer.

1.1. Related Work

DAT has been applied in robust speech recognition in both su-
pervised and unsupervised case. In noise robust speech recog-
nition, they consider the clean speech as the source domain
data while the noise speech as the target domain data. In [16],
within the speech frame and its corresponding senone label of
the labeled training data, DAT is used to learn the senone label
classifier and domain classifier at the same time, using labeled
source domain data and unlabeled target domain data. DAT
was proposed to obtain adversarial senone-discriminative and
domain-invariant representation. In [17], they applied DAT in
a supervised way.

Both of them use DAT as the acoustic model in speech
recognition, they extract the posterior probability from the
senone label classifier for robust speech recognition decod-
ing. But for our work, we use the DAT as the feature extractor
to extract domain-invariant and speaker-discrimintive speech
representations from the first hidden layer of feature extractor
network part.

The rest of the paper is organized as follows. Section 2
details the DAT approach to speaker recognition. Section 3
introduces experimental setup. Section 4 presents and ana-
lyzes the experimental results. We conclude in Section5.

2. DOMAIN ADVERSARIAL TRAINING FOR
SPEAKER RECOGNITION

2.1. Domain Adversarial Training

We propose to project two different domains into a com-
mon subspace to eliminate the domain mismatch. This can
be achieved by training a DAT [13] that learns a speaker-

Fig. 1. Domain Adversarial Training (DAT) framework in-
clude: feature extractor, speaker label predictor, domain pre-
dictor. A gradient reversal layer (GRL) is between feature
extractor and domain predictor.

discriminative and domain-invariant feature representation,
that are described as follows.

A conventional neural network associates input samples
x ∈ X with data labels y ∈ Y , whereX and Y are input space
and output space, respectively. Here in speaker recognition,
x and y are i-vectors and speaker labels. However, the distri-
bution D(x, y) may be different between training and evalua-
tion dataset, which means domain mismatch exists. Assume
there are two distributions S(x, y) and T (x, y) correspond-
ing to source domain and target domain. Both of them are
unknown. Due to the domain shift, S and T are similar but
different.

The unsupervised domain adversarial training architec-
ture is depicted in Figure 1. The architecture is based on a
traditional feed-forward neural network. But different from
a traditional network, it has two output layers, which are
speaker label y ∈ Y and domain label d ∈ {[0, 1], [1, 0]}.
Denote with di ([0, 1] or [1, 0]) for the i-th sample, which in-
dicates whether xi comes from the source domain (xi ∼ S(x)
if di = [1, 0]) or from the target domain (xi ∼ T(x) if
di = [0, 1]). Specifically, this model can be decomposed into
three parts to perform different mappings: a feature extractor
Gf , a speaker label predictor Gy and a domain predictor Gd.
More formally, the mapping functions are:

f = Gf (x; Θf ); (1)
y = Gy(f; Θy); (2)
d = Gd(f; Θd); (3)

where Θf ,Θy,Θd are the parameters of the network (in Fig-
ure 1) and f is aD-dimension feature vector. From left to right
in Figure 1, the features f are firstly extracted from the hidden
layer. Our aim is to jointly train Gf , Gy and Gd. Specifically,
we want to seek Θf to minimize the speaker label predic-
tion loss and to maximize the domain classification loss at the
same time, which can be done by a gradient reversal layer.
Gradient reversal layer between the feature extractor and do-
main label predictor is introduced to search the saddle point
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between speaker label classifier and domain classifier. This
gradient reversal layer multiplies by a certain λ during the
backpropagation. λ is a positive hyper parameter used to trade
off two losses in practice. Gradient reversal layer ensures the
feature distributions over the two domains are similar so that
we can get domain-invariant and speaker-discriminative fea-
tures.

Meanwhile, Θd is estimated to ensure that Gd will per-
form accurate domain classification. This is achieved by the
loss function of this network:

E(Θf ,Θy,Θd) =
∑

i=1,...N
di=[1,0]

Ly(Gy(Gf (xi; Θf ); Θy), yi) −

λ
∑

i=1,...N

Ld(Gd(Gf (xi; Θf ); Θd),di)

=
∑

i=1,...N
di=[1,0]

Li
y(Θf ,Θy)− λ

∑
i=1,...N

Li
d(Θf ,Θd) (4)

whereLi
y(., .) andLi

d(., .) are the loss of the i-th training sam-
ple for speaker label and domain predictors, respectively. We
define a cross entropy function as the loss function.

According to the loss function, we can optimize the DAT
network using stochastic gradient descent (SGD) [18] ap-
proach. We optimize the parameters so that:

(Θ̂f , Θ̂y) = arg min
Θf ,Θy

E(Θf ,Θd,Θy), (5)

Θ̂d = arg max
Θd

E(Θf ,Θd,Θy). (6)

We noted that by maximizing Eq (4) for Θd we minimize
the second item of Eq (4). In this way, Θd is optimaized
for performance of domain predictor. We optimize Θf by
minimizing the first item and maximizing the second item.
With such an optimization strategy, we make sure the fea-
tures extracted from the neural network are domain-invariant
and classification-discriminative.

2.2. Extracting Speaker-Discriminative and Domain-
Invariant Speech Representations

Fig. 2 shows how we use DAT strategy in speaker recogni-
tion. After training the domain adversarial neural network
(DANN), we use enroll i-vector (ie) and test i-vector (it) as
the input to the DANN, and extract the new vectors îe, ît from
the hidden layer of feature extractor network of DANN. îe and
ît are therefore expected to be domain-invariant and speaker-
discriminative speech representation which stand in the same
subspace. Then, we apply the pre-processing (whitening and
length-norm [19]) to îe, ît. Finally, we use a scoring function
to compute the scores between the speaker model and the test
sample. In this paper, we adopt PLDA scoring.

Fig. 2. Block diagram of DAT based speaker recognition. ie
and it represent the enroll and test i-vectors from the target
domain, respectively. îe and ît indicate the extracted domain-
invariant and speaker-discriminative speech representations.

3. EXPERIMENTAL SETUP

3.1. Evaluation Dataset

In this paper, we use 2013 domain adaptation challenge
dataset (DAC 13) [20] as evaluation dataset. DAC 13 posed a
task based on LDC telephone corpora which demonstrates the
effect of dataset mismatch on hyper-parameters such as the
latent speaker and channel factors for PLDA, and provided
the audio lists and i-vectors of NIST SRE and SWB. In this
paper, for fair comparison with other domain adaptation tech-
niques, the DAC 13 i-vector dataset is used as the training and
evaluation dataset, which contains i-vectors that were gener-
ated from UBM and total variability matrix (T-matrix) with
600-dim total factor space. Only SWB data were used to train
the UBM and T-matrix. NIST SRE 2010, denoted as SRE10,
telephone data is used as enroll and test sets. There are two
dataset used for hyper-parameter training: the source domain
SWB set consists of all telephone calls from all speakers
taken from the Switchboard-I and Switchboard-II (all phases)
corpora. The target domain SRE set consists of all the tele-
phone calls without speaker labels taken from the NIST SRE
04, 05, 06, and 08 collections, while SRE-1phn is a reduced
set of SRE with only the i-vectors from 1 telephone number
per speaker, which makes it hard to estimate within-class
variability because of the lack of speaker and channel infor-
mation. This paper selected the more challenging SRE-1phn
data for the domain adaptation task.

3.2. Domain-Adversarial Neural Network (DANN)

In the baseline experiment, we use SRE-1phn data to compute
m and W and estimate the center mean and whitening matrix.
Pre-processing by centering, whitening and length normaliza-
tion is performed on all i-vectors. And we use SRE-1phn and
SWB to estimate PLDA model, respectively, as the domain
matched condition and domain mismatch condition baseline.
The number of eigenvoices of PLDA is set to 400.

In the proposed DAT approach, i-vector pre-processing
are done first. Training data of DANN consists of two parts:
SWB i-vectors with speaker labels and SRE-1phn i-vectors
without speaker label. SWB data are used to train the whole
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Table 1. A comparative study between DAT and the state-of-
the-art adaptation methods under DAC i-vector dataset

Systems# Adaptation
Methods

EER% DCF10
[21]

DCF08

1 – 9.35 0.724 0.520
2 – 5.66 0.633 0.427
3 Interpolated [6] [12] 6.55 0.652 0.454
4 IDV [9] [12] 6.15 0.676 0.476
5 DICN [11] [12] 4.99 0.623 0.416
6 DAE [22] [12] 4.81 0.610 0.398
7 AEDA [12] 4.50 0.589 0.362
8 DAT 3.73 0.541 0.335

network while the SRE-1phn i-vectors are used to train the
feature extractor and the domain classifier, because the data
from target domain does not have speaker labels.

At the test stage, we use SWB, SRE-1phn, enroll and
test data as the inputs to the network and extract the domain-
invariant and speaker-discriminative speech representation
from the first hidden layer of the feature extractor network.
After that we do the PLDA back-end to obtain the scores.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. DANN vs. State-of-the-art Unsupervised Domain
Adaptation Methods

The experimental results are given in Table 1. System 1 is
a domain matched condition, using known label target do-
main SRE-1phn data to estimate WC and AC. System 2 is the
baseline of domain mismatched condition, using known label
source domain data to estimate WC and AC. The EER of Sys-
tem 2 under domain mismatched condition is better than Sys-
tem 1 under domain matched condition. In [12], the authors
believe that the performance degradation of System 1 is due
to insufficient channel information. In a comparative study,
we also report the results from other state-of-the-art studies
in [12]. We observe that, by projecting the data to a common
space with DAT approach, DAT (System 8) in Table 1 shows
a 34% improvement over the System 2 baseline on EER.

4.2. The effect of λ in DANN

We also investigate the impact of the hyper-parameters λ,
which used to trade off the two losses, on the performance
of DANN. The impact of λ on EER, DCF10 and DCF08 are
depicted in Fig. 3 and Fig. 4. When λ=0, the domain predictor
is not trained. We can see the EER decreases as λ increases.
We reach the lowest EER at λ=0.5. Similarly DCF10 and
DCF08 decrease as λ increases. We reach the lowest DCF
when λ=0.4.

Fig. 3. EER of DANN as a function of λ in log scale.

Fig. 4. DCF10 and DCF08 as a function of λ in log scale.

5. CONCLUSIONS

In this paper, we introduce an unsupervised domain adapta-
tion approach-domain adversarial training for speaker recog-
nition, which overcomes the domain mismatch problem in the
speaker recognition by projecting the source domain and tar-
get domain data into the same subspace. As this approach
doesn’t require labeled data from the target domain, we call
it unsupervised domain adaptation. But we should note that
the training still requires the labeled training data from the
source domain, therefore, the training is carried out as in a
mix of supervised (speaker) and unsupervised (domain) man-
ner. By DAT approach, we can obtain domain-invariant and
speaker-discriminative speech representations. Experiments
on DAC 13 i-vector dataset show that, the proposed approach
improves the equal error rate from 5.66% to 3.73%, with 34%
relative error reduction and outperforms the other compared
domain adaptation techniques. In the future, we will explore
the effectiveness of DAT on NIST SRE 16 database and com-
pare the difference between DAT and the recently popular
general adversarial network.
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