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ABSTRACT
Speaker verification systems traditionally extract and model cepstral
features or filter bank energies from the speech signal. In this paper,
inspired by the success of neural network-based approaches to model
directly raw speech signal for applications such as speech recogni-
tion, emotion recognition and anti-spoofing, we propose a speaker
verification approach where speaker discriminative information is
directly learned from the speech signal by: (a) first training a CNN-
based speaker identification system that takes as input raw speech
signal and learns to classify on speakers (unknown to the speaker
verification system); and then (b) building a speaker detector for
each speaker in the speaker verification system by replacing the out-
put layer of the speaker identification system by two outputs (gen-
uine, impostor), and adapting the system in a discriminative manner
with enrollment speech of the speaker and impostor speech data. Our
investigations on the Voxforge database shows that this approach can
yield systems competitive to state-of-the-art systems. An analysis of
the filters in the first convolution layer shows that the filters give em-
phasis to information in low frequency regions (below 1000 Hz) and
implicitly learn to model fundamental frequency information in the
speech signal for speaker discrimination.

Index Terms— Speaker verification, convolutional neural net-
work, end-to-end learning, fundamental frequency

1. INTRODUCTION

The goal of a speaker verification system is to verify the identity
claim of a person given an audio sample. Conventionally, short-term
spectrum-based features such as Mel-Frequency Cesptral Coeffi-
cients (MFCCs) are modeled on a large set of speakers to build a
universal background model (UBM) with a Gaussian mixture model
(GMM). In UBM-GMM approach [1], the UBM is adapted on
the speaker’s data during the enrollment phase to obtain a speaker
model. During the verification phase, the decision is made by a
likelihood ratio test. The most popular approach is to extract a
supervector by stacking the mean vectors of the speaker adapted
GMM [2] and projecting the supervector onto a total variability
space to extract a low dimensional representation called i-vector
(identity vector) [3]. i-vector extraction is typically followed by
a discriminative modeling technique, such as probabilistic linear
discriminant analysis (PLDA) [4] to handle channel or session vari-
ation at the model level. In the verification phase, the decision is
made through the PLDA score. The decision can also be made by
simply computing a distance between i-vectors extracted during the
enrollment phase and the verification phase.
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In recent years, with the advances in deep learning, novel
approaches are emerging where speaker verification systems are
trained in an end-to-end manner [5, 6, 7]. These systems take as
input either output of filterbanks [5, 6] or spectrograms [7, 8]. In
this paper, we aim to go a step further where the features and the
classifier(s) are learned by directly modeling the raw speech signal.
Our motivation is two fold:

1. in recent works, it has been shown that raw speech signal can
be directly modeled to yield competitive systems for speech
recognition [9, 10, 11], emotion recognition [12], voice activ-
ity detection [13] and anti-spoofing [14, 15]. Can we achieve
that for speaker recognition?

2. speaker differences occur at both voice source level and vocal
tract system level [16, 17]. However, speaker recognition re-
search has focused to a large extent on modeling features such
as cepstral features and filter bank energies, which carry in-
formation mainly related to the vocal tract system, with con-
siderable success. Can modeling of raw speech signal em-
ploying little or no prior knowledge provide alternate features
or means for speaker discrimination?

Toward that, by building upon the end-to-end acoustic model-
ing approach for speech recognition presented in [9, 18], we develop
a speaker verification approach where a convolution neural network
(CNN) is first trained in an end-to-end manner to classify (unknown)
speakers, and then adapted to build a speaker-specific binary classi-
fier for speaker verification. Our investigations on the Voxforge cor-
pus show that the proposed approach can yield systems competitive
to state-of-the-art approaches. An analysis of the filters in the first
convolution layer shows that the CNN gives emphasis to information
lying in low frequencies (below 1000 Hz) and models fundamental
frequency information.

The paper is organized as follows. Section 2 presents the pro-
posed approach. Section 3 presents the experimental studies. Sec-
tion 4 presents an analysis of what is learned by the first convolu-
tional layer. Section 5 finally concludes.

2. PROPOSED APPROACH

Figure 1 illustrates the proposed approach with an architecture moti-
vated from [9, 18], i.e., convolution layers followed by a multilayer
perceptron (MLP). In this approach, the development of the speaker
verification system consists of two steps:

1. in the first step, a CNN-based speaker identification with raw
speech signal as input is trained to classify unknown speakers
in an end-to-end manner. By unknown, we mean the speak-
ers that are not part of the speaker verification system. This
step is akin to UBM step in standard speaker verification ap-
proaches, except that here a speaker discriminative model as
opposed to a generative model is trained.
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2. in the second step, for each speaker sm, m = 1, . . . ,M in the
speaker verification system, the CNN-based speaker identifi-
cation system is converted into a speaker detection system for
speaker sm by: (a) replacing the output layer by two classes
(genuine, impostor) and randomly initializing the weights be-
tween the output layer and the MLP hidden layer; and (b)
adapting the CNN in a discriminative manner with the tar-
get speaker enrollment data and impostor speech data from
unknown speakers.

Fig. 1: Illustration of development of speaker verification system
based on the proposed approach.

In the verification phase, the test speech is passed through the
speaker detection system corresponding to the claimed speaker and
the decision is made by averaging the output posterior probability
for genuine class and impostor class over time frames.

The proposed system has the following hyper parameters: (i)
window size of speech input (wseq), (ii) number of convolution lay-
ers N , (iii) for each convolution layer i ∈ {1, · · ·N}, kernel width
kWi, kernel shift dWi, number of filters nfi and max-pooling size
mpi and (iv) number of hidden layers and hidden units in the MLP.
All these hyper-parameters are determined through cross validation
during the first step, i.e., development of the speaker identification
system. In doing so, the system also automatically determines the
short-term processing applied on the speech signal to learn speaker
information. More precisely, the first convolution layer kernel width,
i.e., kW1 and kernel shift, i.e., dW1 are the frame size and frame
shift that operates on the signal. Figure 2 illustrates the first con-
volution layer processing. Note that the frame rate of the system is
determined by the shift of input speech window of size wseq , which
was fixed at 10 ms, as done conventionally.

wseq Convolution

nf

dW

kW

Fig. 2: Illustration of first convolution layer processing.

3. EXPERIMENTS

This section describes the experiments and the results obtained with
our approach and with different baseline systems. All the experi-
ments are reproducible.1

1https://gitlab.idiap.ch/biometric/CNN-speaker-verification-icassp-2018

3.1. Database and experiment protocol

Voxforge is an open source speech database,2 where different speak-
ers have voluntarily contributed speech data for development of open
resource speech recognition systems. Our main reason for choosing
the Voxforge database was that most of the corpora for speaker verifi-
cation have been designed from the perspective of addressing issues
like channel variation, session variation and noise robustness. As a
first step, our aim was to see whether the proposed approach could
learn speaker discriminative information directly from the speech
signal of short utterances, and if yes, whether we could analyze and
find what kind of information. We can expect the Voxforge database
to have low variability as the text is read and the data is likely to be
collected in a clean environment as each individual records his own
speech. However, the database consists of short utterances of about
5 seconds length recorded by speakers over the time.

From this database, we selected 300 speakers who have recorded
at least 20 utterances. We split this data into three subsets, each con-
taining 100 speakers: the training, the development and the evalua-
tion set. The 100 speakers with the largest number of recorded utter-
ances are in the training set, while the remaining 200 were randomly
split between the development and evaluation sets. The statistics for
each set is presented in Table 1.

Table 1: Number of speakers and utterances for each set of the
Voxforge database: training, development, evaluation.

train dev eval
enrollment probe enrollment probe

number of utterances/speaker 60-298 10 10-50 10 10-50
number of speakers 100 100 100

The training set is used by the baseline systems to obtain a UBM.
Whilst, it is used to obtain a speaker identification system in the
proposed approach. The development and evaluation sets are split
into enrollment data and probing data. The enrollment data is used
to train each speaker’s model and always contains 10 utterances per
speaker. The probe part of the development data is used to fix the
score threshold so as to achieve an Equal Error Rate (EER), while
the Half Total Error Rate (HTER) is computed on the probe data of
the evaluation set based on this threshold.

3.2. Systems

3.2.1. Baseline systems

We train several state-of-the-art systems on the Voxforge database
using the spear toolbox [19]. We first perform a Voice Activity De-
tection (VAD), where frame-level energy values are computed, nor-
malized and then classified into two classes. 60 dimensional MFCCs
are then extracted from frames of 25ms shifted by 10ms (19 first
coefficients with the energy + first derivative + second derivative).
These features are then used as input to several state of the art sys-
tems: UBM-GMM [1], i-vectors [3] classified with a cosine distance
or PLDA, inter-session variability (ISV) [20] and joint factor analy-
sis (JFA) [21]. For all the aforementioned systems, we use the de-
fault parameters, previously tuned on a different subset of the Vox-
forge database, as presented in [19].

3.2.2. Proposed system

The same VAD algorithm as for the baseline systems was employed
to remove silent frames. Each utterance was then normalized by its
mean and variance.

2http://www.voxforge.org/
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In the first step, the CNN-based speaker identification system
was trained on the training data by splitting it into a train part (90%)
and a validation part (10%) for early stopping. As discussed in Sec-
tion 2, the proposed system has several hyper-parameters. These
hyper-parameters were determined through a coarse grid search and
based on validation accuracy. The best validation accuracy of 4.52%
at frame level and 0.31% at utterance level was obtained for an archi-
tecture with two convolution layers and one hidden layer in the MLP
and following hyper-parameters: wseq = 510ms, nf1 = nf2 =
20 filters, kW1 = 300 samples, dW1 = 10 samples, kW2 =
10 frames/filter × nf1 filters = 200, dW2 = 1 frame, mp1 =
mp2 = 5 frames and nhu = 100 hidden units. The frame rate at
each convolution layer output is determined by dW1 and dW2.

In the second step, we first developed speaker verification sys-
tems for the development set speakers and determined the threshold
that yields the EER. We obtained an EER of 1.18% for utterance-
level average genuine class probability threshold of 0.267. We then
developed speaker verification systems for the evaluation set speak-
ers and evaluated them with the threshold found on the development
set. In both cases, the enrollment data of each speaker was split into
a train part (80%) and a validation part (20%) for adapting the CNN
and MLP parameters discriminatively. The impostor examples were
the same for all speakers in the development and evaluation sets and
were obtained by randomly selecting 300 utterances from the train-
ing set, which was used to build the speaker identification system.

In all the cases, stochastic gradient descent based training with
early stopping was performed with a cost function based on cross
entropy using Torch software [22].

3.3. Results

Table 2 presents the HTER obtained with the baseline systems and
the proposed CNN-based system on the evaluation set of the Vox-
forge database. We observe that the proposed system outperforms
the baseline systems. One possible reason is that the amount of en-
rollment data, which is on average ≈ 50 seconds per speaker, might
not be sufficient for the baseline systems.

Table 2: Performance of the baseline systems and the proposed
CNN-based system on the evaluation set.

System HTER (%)
UBM-GMM 3.05

ISV 2.40
i-vector, cosine distance 2.82

i-vector, PLDA 5.87
JFA 5.00

CNN 1.20

4. ANALYSIS

This section presents an analysis to get insight about the speaker
discriminative information that is getting modeled at the first convo-
lution layer of the speaker identification system.

4.1. Visualization of filters

To understand the manner in which different parts of the spectrum
are modeled, we analyzed the cumulative frequency response of the
learned filters similar to [18, 23]:

Fcum =

nf1∑
k=1

Fk

‖Fk‖2
,

where Fk is the magnitude spectrum of filter fk, k = 1, . . . , nf1,
computed with a 512-point Discrete Fourier Transform (DFT).

The resulting plot is shown in Figure 3. We can observe that the
filters are giving emphasis to the information lying below 1000 Hz.

Fig. 3: Cumulative frequency response of filters of the first layer.

4.2. Response of filters to input speech

The previous analysis shows what frequency regions the filters are
modeling but not how the filters respond to input speech. In the work
on speech recognition [18], which formed the basis for the present
work, it was found that the filters can be interpreted as a spectral
dictionary,3 and the magnitude frequency response St of the input
signal st =

{
s1t , · · · skW1

t

}
can be estimated, as

St =

∣∣∣∣∣
nf1∑
k=1

〈st, fk〉DFT{fk}

∣∣∣∣∣ , (1)

and analyzed to understand the discriminative information that is be-
ing modeled.

We adopted that approach to understand the speaker discrimina-
tive information that is getting modeled. In our case kW1 = 300
speech samples and nf1 = 20. In the previous section, we observed
that the filters are giving emphasis to low frequency information.
One of the speaker-specific information that lies below 500 Hz is
fundamental frequency. Considering this point we performed anal-
ysis of voiced speech and unvoiced speech of a few male and fe-
male speakers in the development set. In the case of voiced speech,
we found a distinctive peak occurring at the fundamental frequency
(F0), while no such distinctive peak appears for unvoiced speech.
Figure 4 illustrates that for two voiced and two unvoiced frames be-
longing to two different speakers. In both voiced speech cases, a
distinctive peak is present in the frequency response near the corre-
sponding F0 values. Whilst, in the unvoiced speech cases the energy
is very low in the region corresponding to F0 range 70 Hz - 400
Hz compared to the voiced speech case. This suggests that the first
convolution layer is learning F0 modeling.

4.3. F0 estimation using convolution filters

In order to ascertain that the first convolution layer is indeed learn-
ing to determine F0, we implemented a simple F0 estimator based
on the observations made in the previous section and evaluated it on
the Keele Pitch database [27], which contains the speech and laryn-
gograph signal for 5 male and 5 female speakers reading a phoneti-
cally balanced text as well as hand corrected F0 estimates from the

3It is worth mentioning that such interpretations have also been put for-
ward in the signal processing community [24, 25].
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(a) F0 = 149 Hz for the voiced frame input, esti-
mated using wavesurfer [26].

(b) F0 = 206 Hz for the voiced frame input, esti-
mated using wavesurfer.

Fig. 4: Filters response for voiced and unvoiced male speech and
female speech frame inputs.

laryngography signal. The steps involved in the F0 estimation are as
follows:

1. For each frame of input signal of length kW1 = 300 samples,
estimate the frequency response St using Eqn. (1) given the
convolution filters parameters.

2. Locate the DFT bin that has maximum energy in the fre-
quency range 70 Hz - 400 Hz.

3. Threshold the peak energy to decide if the frame is voiced or
unvoiced. If voiced then the frequency corresponding to the
DFT bin is the F0 estimate.

4. Apply a median filter on the estimated F0 contour.
The speech was down-sampled from 20 kHz to 16 kHz to match

the sampling frequency of the Voxforge database. The frame shift
was set to 10ms, as done in the Keele database for determining the
reference F0 from the laryngograph signal. The number of points
for DFT was set as 3092 points. The energy threshold to decide
voiced/unvoiced and the size of median filter were determined on the
female speaker f1n0000w speech, such that low voiced/unvoiced
(V/UV) error and gross error (i.e. deviation of estimated F0 is within
20% of reference F0 or not) is obtained. This threshold and the me-
dian filter size (=7) was used when estimating F0 contours of the
remaining nine speakers data and for evaluating the F0 estimator.
Figure 5 shows the F0 contours for the first phrase spoken by a fe-
male and a male speaker. It can be observed that the estimated F0

contours are reasonably close to the reference F0 contours.
Table 3 presents the results of the evaluation. As it can be

seen, the performance of this simple F0 estimator is clearly be-
yond chance-level performance. The estimation for females are
better than for males. The reason for this could be that frames
of kW1 = 300 samples, which amounts to 19ms, do not contain
enough pitch cycles for very low F0. We have indeed observed that
through informal analysis of the errors.

Fig. 5: Two examples of the F0 contours estimated using the first
layer filters compared to the reference F0 from the database.

Table 3: F0 estimation evaluation on the Keele database

V/UV error (%) Gross error (%)
female (male) 16.1 (22.3) 3.6 (24.0)

5. DISCUSSION AND CONCLUSION

In this paper, we proposed a speaker verification approach that learns
speaker discriminative information directly from the raw speech sig-
nal using CNNs in an end-to-end manner. On the Voxforge corpus,
the proposed approach yielded a system that outperforms systems
based on state-of-the-art approaches. An analysis of the filters in the
first convolution layer revealed that the filters give emphasis to infor-
mation present in low frequency regions. Furthermore, an investiga-
tion on the response of the filters to input speech showed that the first
convolution layer is implicitly learning to model F0 for speaker dis-
crimination. These observations together with the fact that the input
to the system is 510 ms speech and the second convolution layer tem-
porally filters and combines the first convolution layer filter outputs
suggest that the system is learning to discriminate speakers based on
“supra-segmental” information such as intonation patterns. These
findings open interesting research questions:

1. we found that the system focuses on low frequencies and
models F0, which is a voice source related speaker discrim-
inative information. A natural question that arises is: what
other speaker discriminative voice source related information
is it capturing? For instance, is it capturing voice quality re-
lated information?

2. in the present study the first convolution layer kernel width
kW1 determined in a cross validation manner is about 19 ms
speech (segmental), and we found that it is modeling voice
source related information. In the work on speech recogni-
tion [18], kW1 determined in a cross validation manner was
about 2 ms (sub-segmental), and was found to model formant-
like information, which is related to vocal tract system. So
can short kW1, i.e., modeling sub-segmental speech, help
in capturing vocal tract system related speaker differences
prominently and understanding them better?

Our future work will address these questions along with investiga-
tions on other corpora such as MOBIO [28] and NIST that have high
variability in terms of channel and sessions.
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