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ABSTRACT

In this paper, we propose a new loss function called generalized
end-to-end (GE2E) loss, which makes the training of speaker ver-
ification models more efficient than our previous tuple-based end-
to-end (TE2E) loss function. Unlike TE2E, the GE2E loss function
updates the network in a way that emphasizes examples that are dif-
ficult to verify at each step of the training process. Additionally,
the GE2E loss does not require an initial stage of example selec-
tion. With these properties, our model with the new loss function
decreases speaker verification EER by more than 10%, while reduc-
ing the training time by 60% at the same time. We also introduce the
MultiReader technique, which allows us to do domain adaptation —
training a more accurate model that supports multiple keywords (i.e.,
“OK Google” and “Hey Google”) as well as multiple dialects.

Index Terms— Speaker verification, end-to-end loss, Multi-
Reader, keyword detection

1. INTRODUCTION

1.1. Background

Speaker verification (SV) is the process of verifying whether an ut-
terance belongs to a specific speaker, based on that speaker’s known
utterances (i.e., enrollment utterances), with applications such as
Voice Match [1, 2].

Depending on the restrictions of the utterances used for enroll-
ment and verification, speaker verification models usually fall into
one of two categories: text-dependent speaker verification (TD-SV)
and text-independent speaker verification (TI-SV). In TD-SV, the
transcript of both enrollment and verification utterances is phone-
tially constrained, while in TI-SV, there are no lexicon constraints
on the transcript of the enrollment or verification utterances, expos-
ing a larger variability of phonemes and utterance durations [3, 4].
In this work, we focus on TI-SV and a particular subtask of TD-SV
known as global password TD-SV, where the verification is based
on a detected keyword, e.g. “OK Google” [5, 6]

In previous studies, i-vector based systems have been the dom-
inating approach for both TD-SV and TI-SV applications [7]. In
recent years, more efforts have been focusing on using neural net-
works for speaker verification, while the most successful systems
use end-to-end training [8, 9, 10, 11, 12]. In such systems, the neural
network output vectors are usually referred to as embedding vectors
(also known as d-vectors). Similarly to as in the case of i-vectors,
such embedding can then be used to represent utterances in a fix di-
mensional space, in which other, typically simpler, methods can be
used to disambiguate among speakers.

1.2. Tuple-Based End-to-End Loss

In our previous work [13], we proposed the tuple-based end-to-
end (TE2E) model, which simulates the two-stage process of
runtime enrollment and verification during training. In our ex-
periments, the TE2E model combined with LSTM [14] achieved
the best performance at the time. For each training step, a tu-
ple of one evaluation utterance xj∼ and M enrollment utter-
ances xkm (for m = 1, . . . ,M ) is fed into our LSTM network:
{xj∼, (xk1, . . . ,xkM )}, where x represents the features (log-mel-
filterbank energies) from a fixed-length segment, j and k represent
the speakers of the utterances, and j may or may not equal k. The
tuple includes a single utterance from speaker j and M different
utterance from speaker k. We call a tuple positive if xj∼ and the
M enrollment utterances are from the same speaker, i.e., j = k,
and negative otherwise. We generate positive and negative tuples
alternatively.

For each input tuple, we compute the L2 normalized response
of the LSTM: {ej∼, (ek1, . . . , ekM )}. Here each e is an em-
bedding vector of fixed dimension that results from the sequence-
to-vector mapping defined by the LSTM. The centroid of tuple
(ek1, . . . , ekM ) represents the voiceprint built from M utterances,
and is defined as follows:

ck = Em[ekm] =
1

M

M∑
m=1

ekm. (1)

The similarity is defined using the cosine similarity function:

s = w · cos(ej∼, ck) + b, (2)

with learnable w and b. The TE2E loss is finally defined as:

LT(ej∼, ck) = δ(j, k)σ(s) +
(
1− δ(j, k)

)(
1− σ(s)

)
. (3)

Here σ(x) = 1/(1 + e−x) is the standard sigmoid function and
δ(j, k) equals 1 if j = k, otherwise equals to 0. The TE2E loss
function encourages a larger value of s when k = j, and a smaller
value of s when k 6= j. Consider the update for both positive and
negative tuples — this loss function is very similar to the triplet loss
in FaceNet [15].

1.3. Overview

In this paper, we introduce a generalization of our TE2E architecture.
This new architecture constructs tuples from input sequences of var-
ious lengths in a more efficient way, leading to a significant boost
of performance and training speed for both TD-SV and TI-SV. This
paper is organized as follows: In Sec. 2.1 we give the definition of
the GE2E loss; Sec. 2.2 is the theoretical justification for why GE2E
updates the model parameters more effectively; Sec. 2.3 introduces
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a technique called “MultiReader”, which enables us to train a single
model that supports multiple keywords and languages; Finally, we
present our experimental results in Sec. 3.

2. GENERALIZED END-TO-END MODEL

Generalized end-to-end (GE2E) training is based on processing a
large number of utterances at once, in the form of a batch that con-
tains N speakers, and M utterances from each speaker in average,
as is depicted in Figure 1.

2.1. Training Method

We fetch N ×M utterances to build a batch. These utterances are
fromN different speakers, and each speaker hasM utterances. Each
feature vector xji (1 ≤ j ≤ N and 1 ≤ i ≤ M ) represents the
features extracted from speaker j utterance i.

Similar to our previous work [13], we feed the features extracted
from each utterance xji into an LSTM network. A linear layer is
connected to the last LSTM layer as an additional transformation
of the last frame response of the network. We denote the output
of the entire neural network as f(xji;w) where w represents all
parameters of the neural network (including both, LSTM layers and
the linear layer). The embedding vector (d-vector) is defined as the
L2 normalization of the network output:

eji =
f(xji;w)

||f(xji;w)||2
. (4)

Here eji represents the embedding vector of the jth speaker’s ith ut-
terance. The centroid of the embedding vectors from the jth speaker
[ej1, . . . , ejM ] is defined as cj via Equation 1.

The similarity matrix Sji,k is defined as the scaled cosine simi-
larities between each embedding vector eji to all centroids ck (1 ≤
j, k ≤ N , and 1 ≤ i ≤M ):

Sji,k = w · cos(eji, ck) + b, (5)

where w and b are learnable parameters. We constrain the weight to
be positive w > 0, because we want the similarity to be larger when
cosine similarity is larger. The major difference between TE2E and
GE2E is as follows:

• TE2E’s similarity (Equation 2) is a scalar value that defines
the similarity between embedding vector ej∼ and a single
tuple centroid ck.

• GE2E builds a similarity matrix (Equation 5) that defines the
similarities between each eji and all centroids ck.

Figure 1 illustrates the whole process with features, embedding vec-
tors, and similarity scores from different speakers, represented by
different colors.

During the training, we want the embedding of each utterance
to be similar to the centroid of all that speaker’s embeddings, while
at the same time, far from other speakers’ centroids. As shown in
the similarity matrix in Figure 1, we want the similarity values of
colored areas to be large, and the values of gray areas to be small.
Figure 2 illustrates the same concept in a different way: we want the
blue embedding vector to be close to its own speaker’s centroid (blue
triangle), and far from the others centroids (red and purple triangles),
especially the closest one (red triangle). Given an embedding vector
eji, all centroids ck, and the corresponding similarity matrix Sji,k,
there are two ways to implement this concept:

Fig. 2. GE2E loss pushes the embedding towards the centroid of the
true speaker, and away from the centroid of the most similar different
speaker.

Softmax We put a softmax on Sji,k for k = 1, . . . , N that
makes the output equal to 1 iff k = j, otherwise makes the out-
put equal to 0. Thus, the loss on each embedding vector eji could
be defined as:

L(eji) = Sji,j − log

N∑
k=1

exp(Sji,k). (6)

This loss function means that we push each embedding vector close
to its centroid and pull it away from all other centroids.

Contrast The contrast loss is defined on positive pairs and most
aggressive negative pairs, as:

L(eji) = 1− σ(Sji,j) + max
1≤k≤N

k 6=j

σ(Sji,k), (7)

where σ(x) = 1/(1+ e−x) is the sigmoid function. For every utter-
ance, exactly two components are added to the loss: (1) A positive
component, which is associated with a positive match between the
embedding vector and its true speaker’s voiceprint (centroid). (2) A
hard negative component, which is associated with a negative match
between the embedding vector and the voiceprint (centroid) with the
highest similarity among all false speakers.

In Figure 2, the positive term corresponds to pushing eji (blue
circle) towards cj (blue triangle). The negative term corresponds to
pulling eji (blue circle) away from ck (red triangle), because ck is
more similar to eji compared with ck′ . Thus, contrast loss allows us
to focus on difficult pairs of embedding vector and negative centroid.

In our experiments, we find both implementations of GE2E loss
are useful: contrast loss performs better for TD-SV, while softmax
loss performs slightly better for TI-SV.

In addition, we observed that removing eji when computing the
centroid of the true speaker makes training stable and helps avoid
trivial solutions. So, while we still use Equation 1 when calculating
negative similarity (i.e., k 6= j), we instead use Equation 8 when
k = j:

c
(−i)
j =

1

M − 1

M∑
m=1
m 6=i

ejm, (8)

Sji,k =

{
w · cos(eji, c

(−i)
j ) + b if k = j;

w · cos(eji, ck) + b otherwise.
(9)

Combining Equations 4, 6, 7 and 9, the final GE2E loss LG is
the sum of all losses over the similarity matrix (1 ≤ j ≤ N , and
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Fig. 1. System overview. Different colors indicate utterances/embeddings from different speakers.

1 ≤ i ≤M ):

LG(x;w) = LG(S) =
∑
j,i

L(eji). (10)

2.2. Comparison between TE2E and GE2E

Consider a single batch in GE2E loss update: we have N speakers,
each withM utterances. Each single step update will push allN×M
embedding vectors toward their own centroids, and pull them away
the other centroids.

This mirrors what happens with all possible tuples in the TE2E
loss function [13] for each xji. Assume we randomly choose P
utterances from speaker j when comparing speakers:

1. Positive tuples: {xji, (xj,i1 , . . . ,xj,iP )} for 1 ≤ ip ≤ M

and p = 1, . . . , P . There are
(
M
P

)
such positive tuples.

2. Negative tuples: {xji, (xk,i1 , . . . ,xk,iP )} for k 6= j and
1 ≤ ip ≤ M for p = 1, . . . , P . For each xji, we have to
compare with all other N − 1 centroids, where each set of
those N − 1 comparisons contains

(
M
P

)
tuples.

Each positive tuple is balanced with a negative tuple, thus the to-
tal number is the maximum number of positive and negative tuples
times 2. So, the total number of tuples in TE2E loss is:

2×max
((M

P

)
, (N − 1)

(
M

P

))
≥ 2(N − 1). (11)

The lower bound of Equation 11 occurs when P = M . Thus, each
update for xji in our GE2E loss is identical to at least 2(N − 1)
steps in our TE2E loss. The above analysis shows why GE2E up-
dates models more efficiently than TE2E, which is consistent with
our empirical observations: GE2E converges to a better model in
shorter time (See Sec. 3 for details).

2.3. Training with MultiReader

Consider the following case: we care about the model application
in a domain with a small dataset D1. At the same time, we have a
larger dataset D2 in a similar, but not identical domain. We want to
train a single model that performs well on dataset D1, with the help
from D2:

L(D1, D2;w) = Ex∈D1 [L(x;w)] + αEx∈D2 [L(x;w)]. (12)

This is similar to the regularization technique: in normal regular-
ization, we use α||w||22 to regularize the model. But here, we use
Ex∈D2 [L(x;w)] for regularization. When dataset D1 does not have

sufficient data, training the network on D1 can lead to overfitting.
Requiring the network to also perform reasonably well on D2 helps
to regularize the network.

This can be generalized to combine K different, possibly ex-
tremely unbalanced, data sources: D1, . . . , DK . We assign a weight
αk to each data source, indicating the importance of that data
source. During training, in each step we fetch one batch/tuple of
utterances from each data source, and compute the combined loss
as: L(D1, · · · , DK) =

∑K
k=1 αkExk∈Dk [L(xk;w)], where each

L(xk;w) is the loss defined in Equation 10.

3. EXPERIMENTS

In our experiments, the feature extraction process is the same as [6].
The audio signals are first transformed into frames of width 25ms
and step 10ms. Then we extract 40-dimension log-mel-filterbank
energies as the features for each frame. For TD-SV applications,
the same features are used for both keyword detection and speaker
verification. The keyword detection system will only pass the frames
containing the keyword into the speaker verification system. These
frames form a fixed-length (usually 800ms) segment. For TI-SV
applications, we usually extract random fixed-length segments after
Voice Activity Detection (VAD), and use a sliding window approach
for inference (discussed in Sec. 3.2) .

Our production system uses a 3-layer LSTM with projec-
tion [16]. The embedding vector (d-vector) size is the same as the
LSTM projection size. For TD-SV, we use 128 hidden nodes and
the projection size is 64. For TI-SV, we use 768 hidden nodes with
projection size 256. When training the GE2E model, each batch
contains N = 64 speakers and M = 10 utterances per speaker.
We train the network with SGD using initial learning rate 0.01,
and decrease it by half every 30M steps. The L2-norm of gradient is
clipped at 3 [17], and the gradient scale for projection node in LSTM
is set to 0.5. Regarding the scaling factor (w, b) in loss function,
we also observed that a good initial value is (w, b) = (10,−5),
and the smaller gradient scale of 0.01 on them helped to smooth
convergence.

3.1. Text-Dependent Speaker Verification

Though existing voice assistants usually only support a single key-
word, studies show that users prefer that multiple keywords are
supported at the same time. For multi-user on Google Home, two
keywords are supported simultaneously: “OK Google” and “Hey
Google”.

Enabling speaker verification on multiple keywords falls be-
tween TD-SV and TI-SV, since the transcript is neither constrained
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Table 1. MultiReader vs. directly mixing multiple data sources.
Test data Mixed data MultiReader
(Enroll→ Verify) EER (%) EER (%)
OK Google→ OK Google 1.16 0.82
OK Google→ Hey Google 4.47 2.99
Hey Google→ OK Google 3.30 2.30
Hey Google→ Hey Google 1.69 1.15

Table 2. Text-dependent speaker verification EER.
Model Embed Loss Multi Average
Architecture Size Reader EER (%)
(512, ) [13] 128 TE2E No 3.30

Yes 2.78
(128, 64)× 3 64 TE2E No 3.55

Yes 2.67
(128, 64)× 3 64 GE2E No 3.10

Yes 2.38

to a single phrase, nor completely unconstrained. We solve this
problem using the MultiReader technique (Sec. 2.3). MultiReader
has a great advantage compared to simpler approaches, e.g. directly
mixing multiple data sources together: It handles the case when
different data sources are unbalanced in size. In our case, we have
two data sources for training: 1) An “OK Google” training set from
anonymized user queries with ∼ 150 M utterances and ∼ 630 K
speakers; 2) A mixed “OK/Hey Google” training set that is manually
collected with ∼ 1.2 M utterances and ∼ 18 K speakers. The first
dataset is larger than the second by a factor of 125 in the number of
utterances and 35 in the number of speakers.

For evaluation, we report the Equal Error Rate (EER) on four
cases: enroll with either keyword, and verify on either keyword. All
evaluation datasets are manually collected from 665 speakers with
an average of 4.5 enrollment utterances and 10 evaluation utterances
per speaker. The results are shown in Table 1. As we can see, Mul-
tiReader brings around 30% relative improvement on all four cases.

We also performed more comprehensive evaluations in a larger
dataset collected from ∼ 83 K different speakers and environmen-
tal conditions, from both anonymized logs and manual collections.
We use an average of 7.3 enrollment utterances and 5 evaluation
utterances per speaker. Table 2 summarizes average EER for differ-
ent loss functions trained with and without MultiReader setup. The
baseline model is a single layer LSTM with 512 nodes and an em-
bedding vector size of 128 [13]. The second and third rows’ model
architecture is 3-layer LSTM. Comparing the 2nd and 3rd rows, we
see that GE2E is about 10% better than TE2E. Similar to Table 1,
here we also see that the model performs significantly better with
MultiReader. While not shown in the table, it is also worth noting
that the GE2E model took about 60% less training time than TE2E.

3.2. Text-Independent Speaker Verification

For TI-SV training, we divide training utterances into smaller seg-
ments, which we refer to as partial utterances. While we don’t
require all partial utterances to be of the same length, all partial
utterances in the same batch must be of the same length. Thus,
for each batch of data, we randomly choose a time length t within
[lb, ub] = [140, 180] frames, and enforce that all partial utterances
in that batch are of length t (as shown in Figure 3).

spk1

spk2

spk3

Pool of Features

spk1

spk2

spk3

Batch 1

Random 
Segment

spk1

spk2

spk3

Batch 2

Fig. 3. Batch construction process for training TI-SV models.

…  Run LSTM on each of 
these sliding windows

Sliding window stride

Sliding window 
length

L2 normalize, then average to get 
embedding

d-vectors

Fig. 4. Sliding window used for TI-SV.

During inference time, for every utterance we apply a sliding
window of fixed size (lb + ub)/2 = 160 frames with 50% overlap.
We compute the d-vector for each window. The final utterance-wise
d-vector is generated by L2 normalizing the window-wise d-vectors,
then taking the element-wise averge (as shown in Figure 4).

Our TI-SV models are trained on around 36M utterances from
18K speakers, which are extracted from anonymized logs. For eval-
uation, we use an additional 1000 speakers with in average 6.3 en-
rollment utterances and 7.2 evaluation utterances per speaker. Ta-
ble 3 shows the performance comparison between different train-
ing loss functions. The first column is a softmax that predicts the
speaker label for all speakers in the training data. The second col-
umn is a model trained with TE2E loss. The third column is a model
trained with GE2E loss. As shown in the table, GE2E performs bet-
ter than both softmax and TE2E. The EER performance improve-
ment is larger than 10%. In addition, we also observed that GE2E
training was about 3× faster than the other loss functions.

Table 3. Text-independent speaker verification EER (%).
Softmax TE2E [13] GE2E
4.06 4.13 3.55

4. CONCLUSIONS

In this paper, we proposed the generalized end-to-end (GE2E) loss
function to train speaker verification models more efficiently. Both
theoretical and experimental results verified the advantage of this
novel loss function. We also introduced the MultiReader technique
to combine different data sources, enabling our models to support
multiple keywords and multiple languages. By combining these two
techniques, we produced more accurate speaker verification models.
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