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ABSTRACT

Factor analysis based i-vector has been the state-of-the-art method
for speaker verification. Recently, researchers propose to build DNN
based end-to-end speaker verification systems and achieve compara-
ble performance with i-vector. Since these two methods possess their
own property and differ from each other significantly, we explore
a framework to integrate these two paradigms together to utilize
their complementarity. More specifically, in this paper we develop
and compare four methodologies to integrate traditional i-vector into
end-to-end systems, including score fusion, embeddings concatena-
tion, transformed concatenation and joint learning. All these ap-
proaches achieve significant gains. Moreover, the hard trial selection
is performed on the end-to-end architecture which further improves
the performance. Experimental results on a text-independent short-
duration dataset generated from SRE 2010 reveal that the newly pro-
posed method reduces the EER by relative 31.0% and 28.2% com-
pared to the i-vector and end-to-end baselines respectively.

Index Terms— speaker verification, end-to-end, i-vector, triplet
loss, hard trial selection

1. INTRODUCTION

Speaker verification(SV) is a binary classification task that aims to
accept or reject a given speech sequence for a claimed identity. Ac-
cording to different test conditions, speaker verification can be cate-
gorized into text-dependent and text-independent [1, 2]. The former
requires the phrases for enrollment and test to be the same, while
the latter impose no constraints on the utterance content. This work
focuses on the short duration text-independent speaker verification.
I-vector followed by Probabilistic Linear Discriminant Analysis
(PLDA) represents the state-of-the-art approach in text-independent
speaker verification. [I-vector is a low-dimensional representation
that models speaker and channel variability in a single total vari-
ability space. PLDA serves as a scoring back-end and compen-
sates the channel distortion. Recent success of deep neural networks
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(DNN) in speech recognition [3, 4, 5, 6] has inspired its applica-
tion in the field of speaker verification. In [7], DNN is utilized to
replace the role of GMM in the i-vector framework. An alternative
approach is to use DNN to extract bottleneck features [8, 9, 10, 11] or
speaker representations directly [12, 13, 14], among which d-vector
[12] is the most typical one. More recently, end-to-end frameworks
have been explored in speaker recognition tasks and shown compa-
rable or even better performance than the classic i-vector approach
[15, 16, 17, 18]. The work in [15, 16] proposed the end-to-end
framework with binary cross entropy loss for text-dependent speaker
verification, and others adopted triplet loss [17, 18].

Since these two frameworks, i.e. i-vector and end-to-end, differ
from each other hugely, it’s natural to utilize their potential com-
plementary property to achieve a better system performance. In
this study, we develop and compare several methods to integrate
the two state-of-the-art approaches into one complete framework,
which takes advantage of both technologies. Experimental results
reveal that the speaker information captured by i-vectors and end-to-
end embeddings are highly complementary to each other. The direct
scoring fusion or embedding concatenation works well but fails to
fully explore the complementary property. Introducing i-vectors into
the end-to-end model training process with transformed concatena-
tion and joint learning will further improve the system performance
significantly.

The rest of the paper is organized as follows. Section 2 briefly
reviews the i-vector framework. Section 3 introduces the triplet-loss
based end-to-end framework and the triplet sampling strategy used
in this paper. The integrated framework to combine the above two
technologies is described in Section 4. Experiments and analysis are
presented in Section 5. Conclusions are drawn in Section 6.

2. I-VECTOR

Systems based on i-vector and Probabilistic Linear Discriminant
Analysis (i-vector/PLDA framework) represent the current state-
of-the-art in text independent speaker verification. In the i-vector
framework [19], the speaker- and session-dependent super-vector
M (derived from UBM) is modeled as

M=m+ Tw )

where m is a speaker and session-independent super-vector, T' is a
low rank matrix that captures speaker and session variability, i-vector
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is the posterior mean of w. After extracting i-vectors, PLDA is usu-
ally adopted as the scoring back-end. It compensates the impact of
channel in the i-vector space and achieves better performance than
simple cosine similarity scoring.

3. END-TO-END SPEAKER VERIFICATION

End-to-end speaker verification can follow different paradigms [15,
16, 17, 18, 20]. In this paper, the triplet-loss based end-to-end sys-
tem is adopted, the architecture is illustrated in Figure 1. In the
training stage, frame level features are extracted and fed into a deep
model. Frame embeddings derived from deep models are averaged
in the temporal pooling layer to form utterance embeddings which
are then L2 normalized onto an unit hypersphere. Triplet loss is
calculated using the utterance embeddings in the same triplet and
back-propagation algorithm is performed to update parameters. In
the evaluation stage, enrolled utterance embeddings from the same
speakers are averaged to obtain speaker embeddings. Euclidean dis-
tance between speaker embeddings and test utterance embeddings
are calculated, which can be utilized for the final speaker verifica-
tion decision. In this work, a VGG-style convolution neural network
(CNN) [21] is used as the deep model, which will be described in
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Fig. 1. End-to-end speaker verification system architecture
with triplet loss

3.1. Triplet Loss

Aiming to minimize the within-class distance and simultaneously
maximize the between-class distance, triplet loss is not as “greedy”
as the pair-wise loss used in [15]. Triplet loss takes three inputs,
including an anchor (an utterance from a specific speaker), a positive
sample (an utterance from the same speaker) and a negative sample
(an utterance from a different speaker). The loss L for an utterance
triplet (u®, u?, u™) is defined as

L, u?,u”) = [IIf(u®) = f @)= 1f () = F(u")[[+al+ )

where f(u) denotes the embedding of the utterance u, o is an empir-
ically defined margin enforced between positive and negative pairs
and the operator [z]+ = maxz(z,0). ||f(u1) — f(u2)|| denotes the
Euclidean distance between two embeddings f(u1) and f(us2). The
total loss is the sum of loss computed on all triplets.

3.2. Triplet Sampling Strategy

Triplet sampling strategy plays a vital role in the training of the
neural network. A good triplet sampling strategy leads to fast con-
vergence and high verification accuracy. In our study, the similar
triplet sampling strategy in [18] is followed. We divide the speak-
ers into different groups and generate triplets in the same group.
To be specific, given each group consists of n speakers and each
person has k utterances, we create triplets for every positive pairs
and the negative samples are randomly selected. In each epoch,
n x k x (k — 1)/2 triplets are created and we further reduce the
number of triplets by only keeping triplets that violate the constraint

[[f(u®) = F@”)] + o < |[f () = fu")].

3.2.1. Hard trial selection

In addition to the basic triplet sampling strategy [18], hard trial se-
lection is applied to improve system performance. We select hard
negative samples at utterance level or speaker level. Hard negative
sampling at utterance level means that for each triplet we select the
negative sample whose Euclidean distance is closest to the anchor.
Hard negative sampling at speaker level gathers the speakers with
similar embeddings into the same group. More specifically, we ran-
domly select one speaker from the training set as the center and find
his (n — 1)-nearest neighbors in the speaker embedding space to
form a group containing n speakers and create triplets among them.
In our experiment, hard negative sampling at speaker level clearly
outperforms that on utterance level and obtained considerable EER
reduction.

4. JOINT I-VECTOR WITH END-TO-END SYSYEM

Factor analysis based i-vector approach follows a generative mod-
eling paradigm, whereas neural networks based end-to-end model
is discriminatively trained. We believe that the speaker informa-
tion they obtained is highly complementary to each other. Accord-
ingly we want to combine these two architectures into one integrated
framework to take both advantages. Four combination strategies are
explored and compared.

4.1. Score Fusion

Score fusion has been widely used due to its simplicity and effective-
ness. The scores obtained via end-to-end system and i-vector system
are normalized to comparable scales and averaged to obtain the final
score for the decision.

4.2. Model Fusion

Rather than operating on the scores, we also explore the methods to
combine two systems at model level. Three distinct modes for model
fusion are proposed.

4.2.1. Direct concatenation of embeddings

The last layer of the end-to-end system can be regarded as an em-
bedding extraction layer. The output of this layer is perceived as
embedded speaker representation, which is similar to DNN embed-
ding in [22]. The learned embedding can then be directly concate-
nated with the standard i-vector to form a new combined vector for
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speaker representation. It should be noted that the direct concatena-
tion mode is also simple and requires no additional training stage,
which is different from the next two methods.

4.2.2. Transformed concatenation of embeddings

Direct concatenation without any additional training stages is sim-
ple. However, it may not fully explore the complete complementary
property from both speaker embeddings. Moreover, the direct con-
catenation increases the vector dimensions which consumes more
computational cost in testing. Thus we proposed a newly trained
transformation for the embedding concatenation as illustrated in Fig-
ure 2. The whole architecture can be divided into two parts, speaker
embedding learning and embedding fusion learning. We wish to ex-
tract speaker discriminant features in the first part and learn how to
effectively combine different speaker embeddings in the second part.
For this transformed concatenation, we keep the parameters of the
front-end CNN network fixed assuming that the quality of speaker
discriminant features is high enough, and only train the linear trans-
formed projection layer. The same triplet loss as described above is
used to optimize the transformed projection layer.
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Fig. 2. The proposed architecture of integrating i-vector with
end-to-end framework for speaker verification

4.2.3. Joint learning

The same architecture in the previous transformed embeddings con-
catenation is utilized in joint learning mode. The only difference
is that instead of keeping the parameters of the speaker embedding
learning part unchanged, the whole system is optimized and updated
in an end-to-end training manner. By joint learning with i-vector,
the new embeddings from the projection layer tend to be more effec-
tive. Experiments reveal that this system has the lowest equal error
rate (EER) and the derived embeddings with joint learning show the
highest discrimination ability among different speaker embeddings.

5. EXPERIMENTS

5.1. Data Preparation

We evaluate the performance of our proposed methods on a short-
duration dataset generated from the NIST SRE corpus. This short
duration text-independent task is more difficult and interesting for
speaker verification. The training set consists of selected data from

SREO04-08, Switchboard II phase 2, 3 and Switchboard Cellular
Part1, Part2. After removing silence frames using an energy-based
VAD, the utterances are chopped into short segments (ranging from
3-5s). The final training set contains 4000 speakers and each speaker
has 40 short utterances. The enrollment set and test set are derived
from NIST SRE 2010 following a similar procedure. The enroll-
ment set contains 300 models (150 from male speakers and 150
from female speakers) and each model is enrolled by 5 utterances.
The test set contains 4500 utterances from the 300 models in the
enrollment set. The trial list we create contains 392660 trials. There
are 15 positive samples and 1294 negative samples on average for
each model. No cross-gender trial exists.

5.2. Implementation Details

The baseline is a standard i-vector / PLDA system based on Kaldi
SRE10 V1 recipe [23]. The front-end features are 20-dimension
MFCCs with a frame-length of 30ms. Delta and acceleration are
appended to create 60-dimension feature vectors. 2048-mixture full
covariance UBM and total variability matrix are trained using the
generated training set. The dimension of extracted i-vectors is 400.
PLDA serves as a scoring back-end.

In our end-to-end system, 36-dimension Fbank features are ex-
tracted as front-end features. The 17-frame context window is ap-
pended to form the 17 x 36 time-frequency feature maps for each
frame. The VGG-style CNN [21], shown in Figure 3, is adopted in
our system. It contains 4 convolution layers, 2 pooling layers and 1
fully-connected layer to produce the frame embeddings. The frame
embeddings are then averaged to utterance embeddings with tempo-
ral pooling and L2 normalization. 2400 utterances from 60 speakers
are selected in each epoch during the training process. For each pos-
itive pair, we randomly select another negative utterance to create a
triplet. 60 x40 x 39/2 = 46800 triplets are generated in each epoch.

The performances of the i-vector and end-to-end baselines are
shown on the top position of Table 1. In our experiment, 5 utterances
are used for enrollment. Experimental results reveal that our end-to-
end system performs slightly better than the i-vector system, which
is consistent with the work in [16, 18].
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Fig. 3. VGG-style CNN architecture in our end-to-end system

5.3. Results and Analysis

5.3.1. Evaluation on integrating i-vector with end-to-end speaker
verification systems

The proposed new approaches to integrate the i-vector with end-to-
end framework are evaluated and the results are illustrated on the
bottom part of Table 1 (with 5 utterances for enrollment). In Table
1, “basic” and “hard trial” refer to two triplet sampling strategies
described in Section 3.2. It is observed that hard trial sampling strat-
egy consistently outperforms basic sampling strategy for all end-to-
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Fig. 4. Visualization of different speaker embeddings: (a) i-vector. (b) embedding from the basic end-to-end system. (c)

embedding from the proposed joint learning end-to-end system.

end involved speaker verification systems. Compared with two base-
lines, integrating i-vector with end-to-end systems improves system
performance no matter which combination mode is adopted. Di-
rect score fusion and naive embedding concatenation achieve obvi-
ous improvements. However, the improvements are not as large as
the other two methods with parameter updating. Several points are
revealed by these results: (1) Training end-to-end systems requires
careful data preparation and trial selection, e.g. strategies such as
hard trial selection help a lot. (2) I-vector system and end-to-end sys-
tem contain a huge complementarity on the speaker knowledge rep-
resentation, which can be utilized to improve system performance.
(3) The complementary property can not be fully exploited by direct
score fusion or naive embedding concatenation methods, in contrast
embedding concatenations with parameter updating obtain a much
larger improvement.

Among all the systems, the end-to-end speaker verification sys-
tem with joint learning i-vector integration achieves the best system
performance. The EER is reduced from 4.96% to 3.42%, relative
31.0% improvement compared to the i-vector system.

Table 1. Equal error rate (EER, %) comparison of different
approaches to integrating i-vector with the end-to-end system

Table 2. EER (%) comparison of different enrollment utter-

ance numbers
utt number 1 3 5 10

i-vector/PLDA 853 547 496 4.44
basic end-to-end 8.84 5.51 476 4.44
joint learning 7.64 413 342 293

5.3.2. Speaker embeddings visualization and analysis

Finally, different speaker embeddings, including the standard i-
vectors, embeddings from the basic end-to-end system and embed-
dings from the joint learning end-to-end system, are visualized and
compared, as shown in Figure 4. Each point represents a projected
utterance embedding by t-SNE [24] and each color represents one
speaker. It is observed that although i-vector has obvious discrim-
ination between speakers, the within-speaker variability is large.
The embeddings extracted from the basic end-to-end system shows
reduced within-speaker variance, which is benefited from the triplet
loss criterion on model optimization. However, the between-speaker
distance among some of speakers is not large enough. The embed-
dings extracted from the newly proposed joint learning end-to-end
system take both advantages from the previous two speaker em-
beddings and show superior property on both the within-speaker
variance and between-speaker distance. This observation is also
consistent with the results in Table 1 and Table 2.

Method basic hard trial
i-vector/PLDA 4.96
basic end-to-end 491 4.76
score fusion 4.67 4.51
direct concatenation 4.31 4.04
transformed concatenation 4.16 3.53
joint learning 3.96 3.42

6. CONCLUSION

Then, the influence of different enrollment utterance numbers
is investigated on the proposed systems. The EER comparison is
given in Table 2. Our newly proposed architecture integrating i-
vector with end-to-end systems by joint learning significantly out-
performs the traditional i-vector and basic end-to-end systems under
all conditions with different enrollment utterance numbers. Another
interesting finding is that the performance gap between the new pro-
posed approach and previous method is enlarged significantly by the
increased enrollment utterance numbers.

This work shows that factor analysis based i-vector and deep model
based end-to-end system contain highly complementary speaker
knowledge. Accordingly we explore a framework to integrate both
i-vector and end-to-end technologies into a paradigm to improve the
system performance. Four combination approaches are developed
and evaluated on a short duration text-independent speaker verifica-
tion dataset based on SRE 2010. Compared to the i-vector baseline,
the proposed joint learning framework reduces the EER by 31.0%
relatively. This improvement can be further enlarged to 34.0% when
with more enrollment utterances.
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