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ABSTRACT

Recently, several papers have demonstrated that neural networks
(NN) are able to perform the feature extraction as part of the acous-
tic model. Motivated by the Gammatone feature extraction pipeline,
in this paper we extend the waveform based NN model by a sec-
ond level of time-convolutional element. The proposed extension
generalizes the envelope extraction block, and allows the model to
learn multi-resolutional representations. Automatic speech recogni-
tion (ASR) experiments show significant word error rate reduction
over our previous best acoustic model trained in the signal domain
directly. Although we use only 250 hours of speech, the data-driven
NN based speech signal processing performs nearly equally to tra-
ditional handcrafted feature extractors. In additional experiments,
we also test segment-level feature normalization techniques on NN
derived features, which improve the results further. However, the
porting of speech representations derived by a feed-forward NN to
a LSTM back-end model indicates much less robustness of the NN
front-end compared to the standard feature extractors. Analysis of
the weights in the proposed new layer reveals that the NN prefers
both multi-resolution and modulation spectrum representations.

Index Terms— ASR, neural network, time-signal, waveform,
modulation spectrum, feature representation

1. INTRODUCTION

Before the recent advance of deep neural network (DNN) based
models, manually defined feature extraction methods had a crucial
role in developing high performing, noise-robust acoustic models
(AM) for ASR, e.g. [1, 2, 3]. These features were designed ac-
cording to the physiology of human hearing [4], psychoacoustical
measurements [5], or to minimize errors of statistical models [6].
From the machine learning viewpoint, however, the feature extrac-
tion should be part of the model, and be derived according to the
training criterion. There have been several attempts to let the model
optimize some of the extraction steps, e.g. learning dynamical fea-
tures [7], or Mel-like filters [8, 9]. As has also been shown in recent
studies, powerful deep classifiers are indeed able to learn the com-
plete feature extraction automatically [10]. But the model usually
needs to be trained on several thousand of hours of data to perform
as good as with cepstral features [11]. Imitating steps from the
standard feature extraction, e.g. sharing the time-frequency decom-
position layer over time, can clearly mitigate the data hunger of AM
trained directly on speech signal [12, 13, 14]. Analyzing the learned
weights, we showed previously that the NN learns band-pass filters
and the first layer performs time-frequency decomposition [10]. It
has also been revealed that the data-driven filters follow patterns
which are similar to an audiological filterbank [15]. The bandwidths
of the learned filters mostly varied between 100–800Hz. This result,
however, indicates that a fixed rate sampling of the filter outputs
might be sub-optimal. E.g. the convolutional filter outputs are usu-
ally downsampled to 10ms rate using maxout operation [11, 13, 16].
The improper downsampling of the output of wide-band filters can

lead to serious aliasing which is not a reversible operation [17, 18].
Therefore, in this paper we substitute the usual max pooling layer –
inserted after the time-frequency decomposition – by a second level
time-convolution, which enables the network to exploit various sam-
pling rate if necessary. We hypothesize that a representation based
on multiple resolution levels can be more beneficial for NNs. The
hypothesis is validated with broadcast news and conversation large
vocabulary continuous speech recognition experiments. Analyzing
the weights will reveal that the NN prefers to learn a modulation
spectrum. To our best knowledge, this is the first time to show that
a NN trained on waveforms learns such a speech representation.
Segment-wise mean and variance normalization is a standard signal
processing step for cepstral features. Experiments are also designed
to investigate the effect of such techniques on a NN based feature
extractor.

2. RELATION TO PRIOR WORK
This work is an extension of our previous work [13]. In [14] it was
shown that training model on waveform can compete with standard
feature extraction method using only 300 hours of speech. Our pro-
posed trainable pooling layer can also be formulated in the network-
in-network framework introduced for ASR in that paper. However,
our proposed model allows easier analysis of the weights, and op-
erates with longer overlap. Motivated by its success in computer
vision field, in [19] multiscale convolutions were tested in an end-
to-end approach. The method can be considered analogous to our
solution. Because the authors used max pooling the size and sam-
pling rate of the different poolings had to be predefined, but network
learns such decisions automatically.

3. MULTI-RESOLUTION SIGNAL PROCESSING WITH
NEURAL NETWORKS

Fig. 1 shows the proposed modification to a contemporary AM of
direct waveform, which is explained in details below. The standard
cepstral feature extraction start with time-frequency decomposition
(TF) of the signal, using a predefined filterbank shared over time:
e.g. Gammatone filterbank (GT) or short-time Fourier transforma-
tion [1, 3]. Assuming an input signal st the filterbank output is:

yk,t′ = st ∗ h′k,t
FIR
=

NTF−1∑
τ=0

st+τ−NTF+1 · hk,τ (1)

Where we assumed that the filter output is sub-sampled, e.g. by a
factor of 10, t = 10 · t′. We also assumed that the filterbank has
finite impulse response (FIR) of length NTF. hk,t denotes the cor-
relation filter, and corresponds to the mirrored and shifted version
of h′k,t. Sharing the filterbank over time is integrated into the NNs
as a convolutional layer [12], also known as time-delay NN [20].
Sub-sampling has computational advantage, and can be applied to-
gether with FIR filters very efficiently. From the communication
theory viewpoint, sampling under the Nyquist frequency is possi-
ble for bandpass signals. However, the absolute minimum sampling
rate (two times the bandwidth) is only valid for specific center filter
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Table 1. Baseline results with GT feature extraction pipeline in var-
ious configurations.

dim. root DCT seg.-wise norm. VTLN WER
mean var dev eval

50

× × × × × 13.2 17.9
× × × × 13.2 17.9
× × × 13.1 17.8
× × 13.5 18.4
× × 13.3 18.1
× 13.5 18.9

14.2 19.6
70 × × × 13.1 17.8

frequency and bandwidth combinations [18]. Our choice of down-
sampling rate is based on both memory constraints and the observa-
tion that final TF filters can have 800Hz bandwidth. Oversampling
of narrow bandpass output results in unnecessary computation but
causes no information loss. It also leads to reliable envelope ex-
traction from real-valued signal, and improves WER [19]. During
the NN training the center frequencies and bandwidths are chang-
ing continuously. They can easier remain in a valid sampling region
if the filters are oversampled [18]. In the following signal process-
ing step the amplitude spectrum is extracted from the down-sampled
TF filter outputs by envelope detection. Working with real-valued
signals, this step applies either half- or full-wave rectification to the
input, followed by low-pass filtering to smooth the final result:

xi,k,t′′
FIR
= f2

(
NENV−1∑
τ=0

f1 (yk,t′+τ−NENV+1) · li,τ

)
(2)

Here we assumed FIR low-pass filters (li,t′ ) with a response of NENV
samples. The base-band signal can be downsampled according to the
bandwidth of the TF filter, usually fs = 100Hz. The rectification is
noted by f1, and is a rectified linear units (ReLU, [21]) or absolute
value function in NNs. Acoustic models trained on direct waveforms
integrate the envelope detector often as non-parameterized function,
e.g. max pooling [22], average [11], p-norm [14]. Since hearing
works on a non-linear scale, the envelope detection step can option-
ally be followed by a logarithmic or root compression [1, 2, 3], or
other non-linearities used in NNs (f2). The output xi,k,t′′ can be
interpreted as the critical band energies (CRBE). In Eq. 2 we intro-
duced the parameter i, which corresponds to learning various low-
pass filters. These filters are shared not only in time but also between
the TF filters. This simple modification allows multi-resolutional
sampling of f1(yk,t′) if NENV and max(i) are chosen large enough,
despite each xi,k,t′′ having the same sampling rate. For instance,
to obtain the usual 100Hz-sampled GT CRBE, li,t′ should be ini-
tialized by the Hamming window of NENV=400 (25ms), and set e.g.
t = 10 · t′ = 160 · t′′ if the input signal (st) is sampled at 16kHz.
To sample the filter output yk,t four times faster, e.g. due to a wider
bandwidth, four li,t′ should be allocated. Each of these envelope
filters should contain a 6.25ms Hamming window, but at four differ-
ent positions within the 25ms analysis window. Thus, the proposed
model can learn wavelet like representations [23]. Although xi,k,t′′
would be extracted from a non-orthonormal basis, due to the exhaus-
tive combination of envelope processing and TF filters, an orthogo-
nal subvector can be selected. During model training we let the NN
decide which elements of xi,k,t′′ contain useful information.

4. EXPERIMENTAL SETUP
We evaluated our multi-resolution, NN based signal processing on
an English broadcast news and conversation speech recognition task.
The training data consisted of 250 hours of speech, from which 10%
was selected for cross-validation. The development and evaluation

sets contain 3 hours of speech each, and the results are reported in
word error rate (WER). For further details about the corpus we re-
fer to our previous works [10, 24]. The experiments were carried
out with the RASR toolkit [25]. As a back-end, a hybrid 12-layer
(with 2000 nodes per layer) feed-forward ReLU network was used
[26, 27]. The NNs were trained by the cross-entropy criterion, using
stochastic gradient descent optimization with momentum, l2 regu-
larization, and discriminative pretraining [28]. The NN front-end
was jointly optimized with the back-end, and both were randomly
initialized. It should be noted, that lot of computation and memory
can be saved in the front-end if t′ and t′′ are integer multiple of t,
and t′′ is integer multiple of t′. We used the following, synchronized
settings: 160 ·t′′ = 10 ·t′ = t, for st sampled at 16kHz. The time-
frequency decomposition was performed by up to 150 filters, each
having a 512-sample (32ms) response. The filterbank was operated
at 10-sample shift (0.625ms), and its output was processed with a
maximum of 20 different envelope extractors. The li,t′ filters had a
maximum length of 160 samples (0.1s). The back-end concatenated
17 neighboring frames, thus, the estimation of a single posterior vec-
tor is based on a waveform snippet of maximum 4662 samples. To
perform the convolution by li,t′ and produce X ′′ in a single step the
network worked with nearly 500k-dimensional vectors. Although
the convolutional filters did not increase the number of parameters
noticeably, compared to the size of the back-end, using 20 hk,t, 150
li,t′ filters, and 17-frame window results in a 51000-dimensional in-
put vector for the DNN. Therefore, the first layer of the DNN was
always low-rank factorized by a 512-dimensional linear BN [29].

5. EXPERIMENTAL RESULTS
5.1. Baselines
In the first set of experiment we tested the GT features in several
settings (Table 1). Switching off the signal processing steps incre-
mentally, significant WER degradation can be observed. Most no-
tably when the root compression is turned off. The DCT transforma-
tion (used without dimension reduction) together with segment-wise
mean normalization resulted in the best setting. Vocal tract length
(VTLN [30]) or segment-level variance normalization seem unnec-
essary for modern ASR. Increasing the dimension, or using differ-
ent filter parameters, e.g. varying the quality factor, did not result
in better WER. With acoustic models of waveforms we aimed at
18.4% WER on the evaluation set, because segment-level informa-
tion was not provided to the NN based front-end. Fully-connected
DNN ([10]) achieved 20.5%, and our initial convolutional net ([13])
only 21.2% WER on the evaluation set. Thus, the gain measured
with the best convolutional processing on small task in [13], could
not be carried over to a larger setup.

5.2. Results with neural network front-ends
The next experiment is comparable to [13], and convolutional raw
time-signal processing was carried out with only a single envelope
extractor (Table 2). The detector was either a trainable FIR filter or
a maxout layer. We set the number of TF filter to 50, f1 to abso-
lute value function, and f2 to absolute value function followed by

time-frequency

decomposition

16kHz 1600Hz

12-layer

ReLU

DNN

100Hz

envelop

extraction

windowing

front-end back-end

:

Fig. 1. Multi-resolution and convolutional processing of speech sig-
nal with neural networks.
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Table 2. Effect of the type of a single envelope extractor.
li,t′ NENV

WER
type dev eval

maxout
16 14.4 19.9
25 14.3 19.8
40 14.4 19.7

FIR 40 14.1 19.8

Table 3. Effect of envelope detector size, and non-linearities before
and after the detector.

max(i) NENV f1 f2
WER

dev eval

5 40

ReLU - 14.2 19.6
ReLU ReLU 14.2 19.5
ReLU ReLU+root 14.0 19.2
Abs - 14.2 19.6
Abs Abs 14.2 19.3
Abs Abs+root 13.7 18.7
Abs+root Abs 13.8 18.7

10 80 Abs Abs 13.9 19.0
Abs+root Abs 13.8 19.0

20 160 Abs Abs 14.3 19.3
Abs Abs+root 14.4 19.6

2.5th root. Using maxout envelope extractor the second rectification
is superfluous. The choice of these non-linearities is based on the
experimental results presented in Table 3. Taking the derivative of
root function at 0 led to infinity, thus we applied gradient clipping
when propagating the error signal through this layer. We also found
that power of 0.4–0.6 fits better for training from scratch, than the
10th root compression of the GT pipeline [3]. As can be seen in
Table 3, both types of envelope detector perform similarly. This sys-
tems already outperformed our fully-connected time-signal baseline,
but only 4% relative. The improvement is mostly related to making
the convolutional front-end more similar to GT pipeline, e.g. choos-
ing root compression non-linearity.

In the following experiment we increased the number of TF fil-
ters up to 150. This decision decreased the WER on the evaluation
set by about 0.5% absolute. As can be seen in Table 3, our current
best result in waveform acoustic modeling is achieved by using the
aforementioned non-linearities. Remarkably, our best NN front-end
performs nearly equally well than the standard GT features without
segment-level normalization. The relative performance difference is
within 2%, and we used only 250 hours of speech data. Pushing
the root function forward, we did not measure significant change in
WER. Increasing the number of envelope detectors and their length
(NENV), we obtained an unexpected degradation in WER, despite a
significant improvement of the objective function on the validation
set. This might be related to the huge dimension of Xt′′ and the first
weight matrix of the back-end, which we are going to address in the
future by convolutional operation. We also note that with more and
longer envelope detectors the effect of root compression is less pro-
nounced. For comparison, we also trained a multi-resolution enve-
lope detector using max pooling, similar to [19]. The first type of the
detector operated on 25ms input, once per 10ms. The second detec-
tor used a 6.25ms window strided within the 25ms analysis window
(NENV) in a non-overlapping way. Thus, the output (xi,j,t′′ ) of the
multi-resolution maxout envelope extractor had the same dimension
as our best trainable one. This system achieved 19.6% WER on the
evaluation set.

In the third experiment, we investigated whether the back-end
model could benefit from segment-level normalization even if NN
front-end is used. We used the front-end of the best performing

Table 4. Effect of the segmentwise mean-and-variance normaliza-
tion on matched and ported NN front-end features.

front-end back- normalization WER [%]
type dim. end mean variance dev eval

NN1 512 MLP
13.7 18.7

× × 13.5 18.5
GT 70 × 13.1 17.8

NN1 512

LSTM

14.5 18.7
× 14.5 19.1
× × 13.0 16.8

NN2 750 × 13.0 17.1
× × 13.9 18.1

GT 70
× × 11.3 14.5
× 11.6 14.9

11.2 14.6

waveform model in Table 3. Features were extracted from the low
rank factorized layer (NN1). Optionally, we also extracted xi,k,t′′ ,
(NN2). Finally, we trained a new 12-layer feed-forward (or LSTM)
back-end on these segment-level normalized features. The results
are summarized in Table 4. As can be seen, segment-level signal
processing technique improved the NN front-end results slightly, but
overall the relative performance gap between the best handcrafted
and NN derived features is 3–4%. We point out that in [14] re-
search has been carried out to integrate long-term first and second
order statistics into NN training. In the last experiment, the NN
front-end features were fed into an LSTM model [31, 32]. We ob-
served significant, 2.3% absolute WER difference on the evaluation
set when standard GT and the ported data-driven features were com-
pared. The results indicate the low-degree of robustness of transfer-
ring NN front-end between different models. Since the extraction
of robust representation at the front-end level is not part of the cri-
terion, the network seems to optimize the front-end by propagating
higher level knowledge into it – like the type of the classifier – and so
making it optimal only for feed-forward deep acoustic models. An
additional fine-tuning or joint front-end training step might alleviate
the mismatch.

6. LEARNED FILTERS
In the feed-forward structure, we could interpret the learned weights
up to three layers. The analysis of the TF filterbank can be car-
ried out similar to [10]. We observed that every frequency band was
covered by various, narrow and wideband filters. This indicates the
necessity of multi-resolution processing. Inspection of the envelope
detector (li,t′ ) revealed that the position of the low-pass filters with
diverse shapes varies within the 0.1s window (160 samples). This
confirms that the NN indeed prefer multiple sub-sampling rate for
the learned TF filters (hk,t). After further analysis we also noticed
a surprising fact. Figure 2 shows three examples of the twenty en-
velope filters learned by the network with NENV = 160. As can be
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Fig. 2. Examples of low-pass and modulation envelope filters
learned from data: time-signal and its corresponding Bode mag-
nitude plot.
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Fig. 3. Sorted amplitude spectra of the learned low-pass (LP) and
modulation filters.

seen on the filter responses and the amplitude diagrams, the network
learned not only low-pass, but also modulation filters. We separated
manually the low-pass (LP) filters with noticeable (less than 6 dB
attenuation) 0Hz component in the response. Then, the filters were
sorted by the (highest) 3 dB cut-off frequencies in the amplitude
characteristic. The magnitude spectrum of the sorted matrix of li,t′
is presented in Fig. 3. Previous experiments suggest that modula-
tion spectrum between 1 and 50Hz covers the modulation content of
speech signal [33]. As can be seen in Fig. 3, there is a clear frequency
range of 0 to 200Hz, where all the data-driven modulation filters are
placed. Thus, the network suppresses components that change too
quickly to be speech, similar to RASTA filters. The higher range
might be related to the rectification step (f1). E.g. let us consider
a narrow filter with 40Hz bandwidth and 1650Hz center frequency
to analyze a 1650Hz signal amplitude modulated by a 10Hz sinu-
soid. After the sub-sampling from 16kHz by a factor of 10 the con-
tent of the filter can also be found around 50Hz. Passing through the
full-wave rectification the modulation content appears around 0, 100,
200Hz, etc. Hence, the network could focus instead of the base-band
also on replicas at higher frequencies. Direct access to the envelope
by complex filter ([34, 35]) or quadratic non-linearity might miti-
gate this effect, but is out of the scope of this study. It should be also
noted that an envelope detector length of 160 samples (0.1s) limits
the resolution of the modulation spectrum to 10Hz. Larger window
would be more comparable to the MRASTA setting of [33], and is
part of our ongoing work.

Sorting the learned filterbanks hk,t and li,t′ by their estimated
center frequencies, neural spectrogram and modulation spectrums
can also be extracted from an input signal. Examples can be seen in
Fig. 4. The first layer of the back-end can be also analyzed, simlar
to [13]. From each row of the weight matrix we could select those
weights which are associated to a specific envelope detector. The
selected weights can be reshaped to a two-dimensional (2D) time-
frequency patch. Plotting those patches, it is possible to gain some
insight which patterns the NN prefers for the various spectral repre-
sentations. Such plots can be seen in Fig. 5. On the data-driven filter-
bank output in 17-frame context, mostly complex 2D-correlation fil-
ters were learned (column four). However, we could also identify lo-
calized Gabor filters with many different shapes and directions (col-
umn two). Some patches show sensitivity only along the frequency
axis (column one), and some others mostly along the time axis (col-
umn three). This is similar to cells in the auditory cortex which
are also tuned to localize spectro-temporal modulations. These ob-
servations were roughly independent on which representations we
analyzed (handcrafted GT CRBE, low-passed or band-passed NN
spectrograms) However, we counted much more localized 2D filters
on the GT spectrogram.

7. CONCLUSIONS

We presented an extension to the convolutional waveform acoustic
model. As has been shown, the introduced second level convolution
can also be interpreted as a trainable envelope extraction step. We
demonstrated that the proposed model is ideally suited to extract var-

to answer that question an
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Fig. 4. (a) GT spectrogram, fs=100Hz; (b) NN spectrogram
(yk,t′ ), fs=1600Hz; (c) low-passed NN spectrogram, fs=100Hz; (d)
40Hz band-passed NN spectrogram spectrum, fs=100Hz.

ious speech representations: Gammatone features, wavelet like time-
frequency decomposition, or modulation spectrum, etc. With prop-
erly chosen parameter settings, we could reduce the speech recogni-
tion errors significantly by 2% absolute (10% relative) compared to
our previous best results. Without any signal processing and using
only 250 hours of speech, our waveform model can perform almost
as good as a comparable model of handcrafted cepstral features. Ad-
ditional experiments demonstrated that the NN front-end shows low
degree of robustness when ported between different back-end mod-
els. Analysis of the neural network parameters revealed that besides
the multi-resolutional representation the network also learns mod-
ulation spectrum. In the future, we plan to carry out further opti-
mization of the proposed structure, and to investigate whether our
approach is also beneficial for the recurrent acoustic models.
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NN spectrogram; (c) 40Hz filtered NN modulation spectrum
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