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ABSTRACT

Previous work has shown that it is possible to improve speech recog-
nition by learning acoustic features from paired acoustic-articulatory
data, for example by using canonical correlation analysis (CCA) or
its deep extensions. One limitation of this prior work is that the
learned feature models are difficult to port to new datasets or do-
mains, and articulatory data is not available for most speech corpo-
ra. In this work we study the problem of acoustic feature learning in
the setting where we have access to an external, domain-mismatched
dataset of paired speech and articulatory measurements, either with
or without labels. We develop methods for acoustic feature learning
in these settings, based on deep variational CCA and extensions that
use both source and target domain data and labels. Using this ap-
proach, we improve phonetic recognition accuracies on both TIMIT
and Wall Street Journal and analyze a number of design choices.
Index Terms: articulatory data, multi-view feature learning, domain
adaptation, deep variational canonical correlation analysis
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1. INTRODUCTION

Speech recognizers are typically trained on acoustic recordings a-
long with their transcriptions. In some cases we have access to addi-
tional data with another modality, such as video or articulation, and
it may be fruitful to use this data as well for improved recognition.
Even if the additional modality is not available at test time, it may
be possible to use, e.g., to learn better acoustic features. For articu-
latory data in particular, it is possible to improve phonetic recogni-
tion via multi-view feature learning using simultaneously recorded
acoustic and articulatory data separate from the recognizer training
data [1, 2, 3, 4]. These improvements hold for unseen speakers.
However, it is much more challenging to transfer this benefit to a
new dataset from a different domain, where the recording conditions
and linguistic material differ [1].

In this work we study how to transfer the potentially useful in-
formation that exists in an acoustic-articulatory dataset (the source
domain, in this case the U. Wisconsin X-ray Microbeam Dataset
(XRMB) [5]) to a recognizer in a different target domain (here, TIM-
IT [6] or Wall Street Journal (WSJ) [7]). We start from a success-
ful recent approach for multi-view feature learning, deep variational
canonical correlation analysis with private variables (VCCAP, Sec-
tion 3.1) [8, 4], and consider ways of using it across domains.

We investigate this problem in three settings, each with a differ-
ent level of supervision: no labels for either the acoustic-articulatory
source domain or the target recognizer domain during feature learn-
ing; target-domain recognition labels available in addition to unla-
beled source-domain acoustic-articulatory data; and labels for both

1This work was completed while the author was working at TTIC.

target dataset and source (acoustic-articulatory) dataset available
during feature and recognizer training time. We develop models for
jointly training on data from both domains, which improve phonetic
recognition performance over competitive baselines.

2. RELATED WORK

Multi-view feature (representation) learning has been studied for a
variety of applications, typically using canonical correlation analy-
sis (CCA) [9, 10, 11], contrastive losses [12, 13, 14], or other joint
neural models [15], including acoustic feature learning with paired
articulation [1, 2, 4, 3]. Other ways of using acoustic-articulatory
measurement data, for example via articulatory inversion, have also
been studied extensively [16, 17, 18, 19]. Recent work has found that
multi-view feature learning approaches that do not explicitly predic-
t articulatory measurements tend to outperform articulatory inver-
sion [2], and that VCCAP outperforms other approaches [4], so this
forms our starting point. The setting where the multi-view data is al-
so labeled has been studied less extensively; recent work found that
a supervised extension of linear CCA can work well [20]; here we
explore this setting but with more powerful nonlinear models.

Our goal can be viewed as combining multi-view feature learn-
ing and adaptation to the target domain, so domain adaptation re-
search is also relevant [21, 22, 23], and speaker adaptation methods
can be viewed as an instance of this [24, 25, 26, 27]. It is possible to
combine these adaptation techniques with multi-view feature learn-
ing, and we consider one such method in Section 4.1; many more
adaptation techniques can in principle be applied.

3. CROSS-DOMAIN MULTI-VIEW FEATURE LEARNING:
UNSUPERVISED METHODS

In this section, we will consider the case where we learn acoustic
features from the multi-view source dataset without accessing any
labels for the source or target datasets.

3.1. Variational deep CCA with private variables (VCCAP)
The basic multi-view model we begin with is deep variation-
al canonical correlation analysis with private variables (VC-
CAP) [8, 4], shown in Fig. 1A. VCCAP can be interpreted as a
model for generating acoustic-articulatory data from latent vari-
ables that represent the information that is common to both views,
combined with acoustic-specific and articulatory-specific latent vari-
ables that represent information that is “private” to one of the views.
While the model appears in some ways quite complex, it is easier to
train and more successful in practice than earlier methods like deep
CCA [8].

We use superscript S to denote the source domain and T for the
target domain. zS in Fig. 1A represents information shared by the
two views, which is hopefully discriminative information related to
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Fig. 1: (A): VCCAP model for multi-view data; (B): Variational autoencoder (VAE) for the target-domain acoustics. The projection network
is the same as that of VCCAP (indicated by the colors); (C): Like (B), but with additional private variables for the target domain; (D): Like
(C), but sharing only part of the projection network (in red) with VCCAP; the other layers (yellow) model domain-specific information.

the phonetic labels. However, there can be useful information that is
not shared in the two views; thus two “private” variables hx and hy
are introducted for representing acoustic- and articulatory-specific
information respectively. The acoustic measurements are assumed
to be generated from zS and hSx , and the articulatory measurements
from zS and hSy , via the reconstruction networks pSθ (·).

The model uses variational inference [28] and can be viewed
loosely as a multi-view extension of variational autoencoders [29,
30]. The projection network (colored green and red) outputs the
mean and variance of a multidimensional Gaussian approximate pos-
terior distribution qSφ (z

S |xS). The learned acoustic features are sim-
ply this conditional Gaussian mean, which serves as an estimate
of zS ; the rest of the network can be discarded after training. We
use only the shared variables zS and discard the view-specific ones
hS .1 The objective function of VCCAP, given a single acoustic-
articulatory training pair (xS , y), can be written as (see [8])
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where p(zS), p(hSy ) and p(hSx ) are prior distributions of the latent
variables, which are allN (0, I) here unless otherwise indicated.

3.2. Joint modeling of source and target domains
Using the learned VCCAP network qSφ (z

S |xS) directly in a target
domain does not in general work well “out of the box” if there is sig-
nificant domain mismatch. Instead, we learn a projection network
for the target domain, qTφ (z

T |xT ), that is informed by the source-
domain model in various ways. One way is to have the two networks
fully/partially share parameters, and train the two jointly in a unified
model. Fig. 1B,C,D show several options for modeling the target-
domain data. Architectures B, C, and D can each be combined with
A to form three different models that can be viewed as “weakly su-
pervised” by the cross-domain articulatory data. By “combining”,
here we mean that training is done with a loss that is a linear combi-
nation of the multiple relevant losses.

Model B represents the target-domain acoustics with a variation-
al autoencoder (VAE), trained jointly with VCCAP with a shared
projection network. Model C (“VAEP”) is similar to B, but with
an additional private variable hT and corresponding private projec-
tion network that is specific to the target domain. Depending on

1In initial experiments, using hS did not improve performance; this mo-
tivated the use of the target-domain private variables hT in the next section.

the degree of domain mismatch, sharing the complete VCCAP net-
work between source and target domains may still be too restrictive.
Model D is similar to C, but with only a subset of the VCCAP layers
shared. The hidden layers that are closer to the acoustic input (in
yellow) are treated as domain-specific, while the layers closer to the
output features (in red) are shared between domains. The objective
function for C and D, for one acoustic frame xT , can be written as:
LV AEP (x

T ) := E{qT
φ
(zT |xT )qT

φ
(hT |xT )}

[
log
(
pTθ (x
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)]

−KL
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(2)

The objective for the combined model on S and T is

(1− β)LV CCAP (xS , yS) + βLV AEP (x
T ) (3)

where β > 0 is a hyper-parameter and p(hT ) and p(zT ) are set
to N (0, I). The feature vector used for downstream tasks is the
mean of qTφ (z

T |xT ). In practice, we train all of the models with
minibatch gradient descent methods. Using a joint loss for data from
both domains is done by taking each minibatch to include some data
drawn independently from each domain; for each domain-specific
loss term we use the corresponding subset of the minibatch.

4. SUPERVISED APPROACHES

If target-domain labels are available, we may be able to do better
than the unsupervised methods of the previous section. For con-
creteness, we use bidirectional long short-term memory (LSTM) re-
current neural networks (RNNs) [31, 32] trained with the connec-
tionist temporal classification (CTC) loss [33], which have recently
achieved state-of-the-art results in ASR (e.g., [34]).

4.1. Domain adaptation with extra layers
One way to use the learned features in a new domain is to add ex-
plicit domain adaptation layers (see Sec. 2). In this approach, the
projection network qSφ (z

S |xS) (mean only) is shared with the target
domain. However, two additional fully connected layers, one with
ReLU [35] activation and one linear transformation, is used to trans-
form the target input data before it is fed to the VCCAP projection
network. The output of this composed projection network is the in-
put to the recognizer. All training is done end-to-end. Such a simple
model corresponds to “VCCAP + adaptation layers” in Table 2.

4.2. Joint training of target recognizer and features
An alternative to explicit domain adaptation is to adapt implicitly, by
keeping the feature projection structure fixed but jointly learning it
along with the recognizer. This may be preferable over adding extra
layers, which can result in an overparameterized model. To be more
concrete, for the feature learning model we will use VCCAP+VAEP
from the previous section, since (as will be shown in Sec. 5) it is the
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best-performing unsupervised model (although the approach in this
section can be used with any of the feature learning losses).

Denoting one target-domain acoustic utterance xT and one
frame xT , the objective function of the multitask learning model
(averaged over source and target datasets) is as follows:

α
{
(1− β)LV CCAP (xS , y) + βLV AEP (x

T )
}

+(1− α)LCTC(FV AEP (xT )) (4)

where FV AEP (xT ) is the sequence of means of qTφ (z
T |xTi ) for all

frames i in xT ; these are the learned features that are used as input
to the target-domain recognizer. α is a tunable tradeoff parameter
between the recognizer and feature learning losses.

4.3. Joint training of source and target recognizers
Finally, if we have access to labels for both source and target do-
mains, we may be able to benefit from jointly training recognizers
for both domains, without direct use of the learned feature projection
network in the target domain. In this approach, the source-domain
recognizer uses VCCAP-based features fed into an LSTM-CTC rec-
ognizer, and the target-domain recognizer uses the original acoustic
features fed into another LSTM-CTC recognizer. We only share the
topmost recurrent layer of the two recognizers for the two domain-
s, which are trained jointly. The idea here is to implicitly use the
cross-domain articulatory data by encouraging the two recognizers
to agree. Although source-domain labels are present, the articulato-
ry data may still help as a form of regularizer. While this may seem
like a very weak use of the articulatory data, this approach achieves
good recognition improvements on the target domain (see Sec. 5).

5. EXPERIMENTS

We use three datasets: XRMB, TIMIT, and WSJ. XRMB consist-
s of 47 speakers and 2357 utterances. We use the standard TIMIT
3696-utterance training set, 192-utterance core test set, and a sepa-
rate development set of 400 utterances [36]. For WSJ, the (standard)
training/dev/test sets consist of 37416/503/333 utterances. The fi-
nal task is phonetic recognition, evaluated using phonetic error rate
(PER). We consider three source-target domain pairs:

1) XRMB(35)→XRMB(12) This setup follows earlier work [2,
8, 4]. We split the 47 XRMB speakers into two disjoint sets, con-
sisting of 35 and 12 speakers respectively. We treat the 35 speakers
as the source “domain” and the 12 speakers as the target “domain”,
and we do not access the articulatory data for the target speakers.
We perform recognition experiments in a 6-fold setup on the 12
target speakers, where in each fold we train on 8 speakers, tune on
2, and test on 2; we then report the average performance over the 6
test sets. This can be viewed as a very mild case of cross-domain
learning. As shown in prior work, in this setting we can improve
target speaker performance by simply using features learned on the
source speakers. Our experiments in this setting are intended to
ensure that our approaches still work in this mild case.

2) XRMB→ TIMIT In this setting we use XRMB as the source
domain and TIMIT as the target domain. One prior paper has ex-
plored an application of multi-view feature learning from XRMB to
TIMIT, but in a more limited setting with fewer speakers and with
shallow (kernel-based) feature learning models [1].

3) XRMB → WSJ Here we use XRMB as the source domain
and WSJ as the target domain. Whereas XRMB and TIMIT have
similar amounts of data, WSJ is much larger, so we may expect that
any external multi-view data will have a smaller effect. We include
both TIMIT and WSJ as target domains, both to test this possibility
and more generally to measure applicability across target domains.

Fig. 2: Summary of baselines and best final results.

Experimental details. For XRMB/TIMIT, we use 39-D MFCCs
as input. For WSJ we use 123-D log mel filterbank features (40-D
filter outputs plus energy, along with 1st and 2nd derivatives). We
use no speaker normalization/adaptation. The XRMB input articu-
latory features are horizontal and vertical displacements of 8 pellets
attached to the articulators (16-D per frame). The acoustic inputs
to VCCAP and VAE(P) are typically concatenated over a 15-frame
window centered at each frame. For a few settings, we also try a larg-
er (71-frame) window, using the window-growing approach of [4].
We implement our models using TensorFlow [37]. VCCAP model-
s are trained on XRMB for 300 epochs. The RNN recognizers are
2-layer bidirectional LSTMs trained for 50 epochs for XRMB/WSJ
and 80 epochs for TIMIT; the epoch with the best dev PER is used
for test set experiments. We optimize with Adam [38] for XRM-
B/WSJ; for TIMIT we tune the choice of vanilla SGD or Adam.
We use dropout [39] at a rate of 0.2 − 0.4. The batch size is 200
frames for VCCAP and VAE(P); for recognizer training, the batch
size is 1/2/16 utterances for XRMB/TIMIT/WSJ. We decode with
beam search with beam size 100/200/50 for XRMB/TIMIT/WSJ,
using the algorithm of [40]. We use a 9-gram phonetic language
model for WSJ decoding. Hyperparameters (α (Eq. 4), β (Eq. 3 and
4), learning rate, dropout rate, tunable parameters for decoding, etc.)
were tuned on the development sets.

5.1. Main results
Fig. 2 summarizes our baseline and best results. Detailed compar-
isons are given in Tables 1–3, discussed in the following sections.

Our best model in the unsupervised XRMB(35)→XRMB(12)
setting is VCCAP+VAEP, which reduces the PER from 12.9% to
7.4%. Using target-domain supervision, joint training with the RNN
recognizer (Eq. 4) gives a PER of 7.3%. In the fully supervised
setting, we obtain a PER of 4.9% using jointly trained recognizers
with VCCAP feature input.

In the XRMB→ TIMIT and XRMB→WSJ settings, we exper-
imented with a reduced set of models. For XRMB→ TIMIT, com-
pletely unsupervised methods fail. Using target-domain labels, the
best model is VCCAP+VAEP(partial)+Recognizer, similarly to the
XRMB(35)→XRMB(12) case but with only partial sharing of the
VAEP projection to account for domain differences. The best fully
supervised approach, joint recognizers trained on VCCAP features,
reduces PER from 20.9% to 20.2%. For WSJ, we experimented on-
ly with the fully supervised setting, where PER is improved from
6.8% to 6.3%.

5.2. XRMB(35)→ XRMB(12)
Table 1 gives the XRMB test set results. Row 1 is the baseline,
i.e. the RNN with MFCC inputs trained with CTC loss. Since our
feature learning uses 15-frame input windows, we also include (row
2) a baseline RNN that uses windowed 15-frame MFCCs, to confirm
that any improvement is not due to windowing; in fact this baseline
is much worse. Row 3 uses acoustic features learned with VCCAP
on XRMB(35), reproducing the setting of prior work [4].2 Row 4
jointly learns the VCCAP projection on XRMB(35) and a VAEP

2The results here are better than those of [4] due to improved optimization
and tuning, and a new TensorFlow version.
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Method Test set PER
1. Baseline recognizer 12.9
2. Baseline + windowing 17.5
Fully unsupervised
3. VCCAP 9.4
4. VCCAP+VAEP 7.4
5. VAEP+VAEP 14.2
Unsupervised source domain, supervised target domain
6. VCCAP+Recognizer 8.9
7. VCCAP+VAEP+Recognizer 7.3
8. VAEP+VAEP+Recognizer 8.6
Supervised source + target domains
9. Joint recognizers (acoustic-only) 5.9
10. Joint recognizers (VCCAP features) 4.9

Table 1: Detailed experiments for XRMB(35)→XRMB(12): PER
(%) averaged over 6 folds.

projection on the target speakers XRMB(12), which produces the
best unsupervised feature learning result.

Rows 6, 7 are end-to-end versions of rows 3, 4, which show
the benefit of learning the features and recognizer jointly when the
target-domain transcriptions are available at feature learning time.
Specifically, row 7 corresponds to the multitask model that jointly
learns VCCAP on the 35-speaker “source domain” and VAEP and
the RNN on the 8-speaker “target domain” training set. This model
is best in the unsupervised source domain case.

One possibility is that the benefits come from the extra acoustic
data. To check this, in rows 5, 8 we replace the VCCAP projection
with a VAEP applied to the source speakers’ acoustics, trained joint-
ly with the rest of the model as in rows 4, 7. Indeed, row 8 also
improves greatly over the baseline, but is still well behind our best
multi-view approach. In the fully unsupervised setting, the acoustic-
only approach (row 5) fails. The large gap between rows 4 and 5,
and between rows 7 and 8, indicates the advantage of using external
acoustic-articulatory pairs over extra acoustics alone.

Finally, we consider the case where both “domains” are super-
vised, i.e. we have transcriptions for all of XRMB. Rows 9, 10 cor-
respond to recognizers jointly trained on the 35 source + 8 target s-
peakers, using only acoustic data vs. using VCCAP features learned
on the 35-speaker multi-view data.3 Even in the fully supervised
case, the multi-view approach still gives a 1% improvement.

In these XRMB experiments, the source and target “domains”
are very well matched, and we always use models with shared pro-
jection networks across domains. In the next two subsections, we
consider the two settings with much larger domain mismatch, and
include experiments with partially shared projection networks.

5.3. XRMB→ TIMIT
In Table 2, row 1 is the baseline RNN, and row 2 again shows that
windowing alone does not help. Row 3 shows that directly using
VCCAP learned on XRMB fails to generalize to TIMIT. Row 4 in-
troduces domain-specific private variables; the improvement over
row 3 shows their benefit. Row 5 is similar to row 4 but with a
partially shared projection (Sec. 3.2). Rows 6, 7 and 8 use the target
domain labels via end-to-end joint training of features and recogniz-
er. Compared to the XRMB(35) → XRMB(12) case, we obtain a
smaller improvement by learning features using XRMB, but there is
still a good gain. Row 6 shows that by adding domain adaptation
layers, we can obtain almost the same gains as the best model.

Row 12 corresponds to two domain-specific recognizers trained
3In this case we use VCCAP with a 71-frame window acoustic input.

Method Dev Test
1. Baseline 19.2 20.9
2. Baseline + windowing 22.4 -
Fully unsupervised
3. VCCAP 29.7 -
4. VCCAP+VAEP 25.3 -
5. VCCAP+VAEP(partial) 24.9 -
Unsupervised source domain, supervised target domain
6. VCCAP + adaptation layers 19.0 -
7. VCCAP+VAEP+Recognizer 19.2 -
8. VCCAP+VAEP(partial)+Recognizer 18.8 20.6
Supervised source + target domains
9. Joint recognizers (acoustic input) 18.8 -
10. XRMB+TIMIT recognizer (acoustic input) 18.4 -
11. Joint recognizers +3 layers 19.0 -
12. Joint recognizers (VCCAP features) 18.1 20.2

Table 2: PER (%) for XRMB→TIMIT. ‘Partial’ = projection net-
works of the two domains are partially shared (Fig. 1 A, D).

jointly with a final shared layer (Sec. 4.3), which produces our best
results. Again, we check whether this improvement could be due
solely to the extra acoustic data, by training a similar model on on-
ly the acoustic input; the result (row 9) is worse, indicating that our
improvements are not due to the extra acoustics alone. Row 10 cor-
responds to a single recognizer trained on the merged acoustic data
of XRMB and TIMIT; this model does surprisingly well, but still
worse than the best performer. Row 11 adds a 3-layer DNN to row
9, and takes as input 15-frame concatenated MFCCs, to test whether
any improvement may be due only to the additional structure of the
VCCAP layers. This result is worse, verifying that the improvements
are not solely due to the model structure.

5.4. XRMB→WSJ
Based on the success of the supervised joint recognizers approach
in the XRMB→ TIMIT setting, we only consider this approach for
WSJ. We again train source and target recognizers with the topmost
layer shared, using either VCCAP features or plain acoustic features
as input to the source-domain recognizer. Again, using the XRMB
articulatory data improves WSJ phonetic recognition, more so than
the additional external acoustic data alone.

Method Dev Test
1. Baseline 8.3 6.8
2. Joint recognizers (acoustic input) 8.2 6.6
3. Joint recognizers (VCCAP features) 7.9 6.3

Table 3: Phonetic error rates (%) for XRMB→WSJ experiments.

6. CONCLUSION

We have found that acoustic-articulatory data can be used to learn
improved acoustic features for phonetic recognition, even when the
multi-view data is from a different domain than the recognizer’s data.
While it had been previously shown that improved acoustic features
can be learned from acoustic-articulatory data, the cross-domain ap-
proach is much more practical. We have also confirmed that the
benefit does not come simply from having additional acoustic data,
and that there is a benefit even when both the source and target do-
main data sets are labeled. That is, the articulatory measurements
provide a different kind of supervisory signal that is complementary
to the acoustics and labels. Further exploration is needed to compare
VCCAP-based methods to other types of multi-view feature learn-
ing, and to study their applicability in word-level recognition.
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