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ABSTRACT

Sequence-to-sequence models, such as attention-based models in au-
tomatic speech recognition (ASR), are typically trained to optimize
the cross-entropy criterion which corresponds to improving the log-
likelihood of the data. However, system performance is usually mea-
sured in terms of word error rate (WER), not log-likelihood. Tradi-
tional ASR systems benefit from discriminative sequence training
which optimizes criteria such as the state-level minimum Bayes risk
(sMBR) which are more closely related to WER.

In the present work, we explore techniques to train attention-
based models to directly minimize expected word error rate. We
consider two loss functions which approximate the expected num-
ber of word errors: either by sampling from the model, or by using
N-best lists of decoded hypotheses, which we find to be more effec-
tive than the sampling-based method. In experimental evaluations,
we find that the proposed training procedure improves performance
by up to 8.2% relative to the baseline system. This allows us to
train grapheme-based, uni-directional attention-based models which
match the performance of a traditional, state-of-the-art, discrimina-
tive sequence-trained system on a mobile voice-search task.

Index Terms— sequence-to-sequence models, attention mod-
els, minimum word error rate training, minimum Bayes risk

1. INTRODUCTION

There has been growing interest in the automatic speech recogni-
tion (ASR) community in building end-to-end trained, sequence-to-
sequence models which directly output a word sequence given in-
put speech frames, without requiring explicit alignments between
the speech frames and labels. Examples of such approaches in-
clude the recurrent neural network transducer (RNN-T) [1, 2], the
recurrent neural aligner (RNA) [3], attention-based models [4, 5],
and connectionist temporal classification (CTC) [6] with grapheme-
based [7] or word-based targets [8]. Such approaches are motivated
by their simplicity: since these models directly output graphemes,
word-pieces [9], or words, they do not require expertly curated pro-
nunuciation dictionaries; since they can be trained to directly output
normalized text, they do not require separate modules to map rec-
ognized text from the spoken to the written domain. In our recent
work, we have shown that such approaches are comparable to tradi-
tional state-of-the-art speech recognition systems [10, 11].

Most sequence-to-sequence models (e.g., [4]) are typically
trained to optimize the cross-entropy (CE) loss function, which
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corresponds to improving log-likelihood of the training data. Dur-
ing inference, however, model performance is commonly measured
using task-specific criteria, not log-likelihood: e.g., word error
rate (WER) for ASR, or BLEU score [12] for machine translation.
Traditional ASR systems account for this mismatch through dis-
criminative sequence training of neural network acoustic models
(AMs) [13, 14] by fine-tuning a cross-entropy trained AM with
criteria such as state-level minimum Bayes risk (sMBR) which are
more closely related to word error rate.

In the context of sequence-to-sequence models, there have been
a few previous proposals to optimize task-specific losses. In their
seminal work, Graves and Jaitly [15] minimize expected WER of
an RNN-T model by approximating the expectation with samples
drawn from the model. This approach is similar to the edit-based
minimum Bayes risk (EMBR) approach proposed by Shannon,
which was used for minimum expected WER training of conven-
tional ASR systems [16] and the recurrent neural aligner [3]. An
alternative approach is based on reinforcement learning, where the
label output at each step can be viewed as an action, so that the
task of learning consists of learning the optimal policy (i.e., optimal
output label sequence) which results in the greatest expected reward
(lowest expected task-specific loss). Ranzato et al. [17] apply a
variant of the REINFORCE algorithm [18] to optimize task-specific
losses for summarization and machine translation. More recently
Bahdanau et al. [19] use an actor-critic approach, which was shown
to improve BLEU scores for machine translation.

In the present work, we consider techniques to optimize attention-
based sequence-to-sequence models in order to directly minimize
WER. Our proposed approach is similar to [15, 16] in that we ap-
proximate the expected WER using hypotheses from the model. We
consider both the use of sampling-based approaches [15, 16] as well
as approximating the loss over N-best lists of recognition hypotheses
as is commonly done in ASR (e.g., [20]). However, unlike Sak et
al. [3] we find that the process is more effective if we approximate
the expectation using N-best hypotheses decoded from the model
using beam-search [21] rather than sampling from the model (See
section 5.1). The proposed techniques are applied on an English
mobile voice-search task, to optimize grapheme-based models, with
uni- and bi-directional encoders, where we find that we can improve
WER by up to 8.2% relative to a CE-trained baseline model. Min-
imum word error rate training allows us to train grapheme-based
sequence-to-sequence models which are comparable in performance
to a strong state-of-the-art context-dependent (CD) phoneme-based
speech recognition system [22].

The organization of the rest of the paper is as follows. We
describe the particular attention-based model used in this work in
Section 2 and describe the proposed approach for minimum WER
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Fig. 1: The attention-based model defines a probability distribution
over the next label, conditioned on the history of previous predic-
tions: P (yu|yu−1, · · · , y0,x).

(MWER) training of attention models in Section 3. We describe our
experimental setup and our results in Sections 4 and 5, respectively,
before concluding in Section 6.

2. ATTENTION-BASED MODELS

We denote the set of speech utterances, suitably parameterized
into feature vectors as: x = (x1,x2, · · · ,xT ), where xi ∈ Rd,
and the corresponding ground-truth label sequence as: y∗ =
(y∗0 , y

∗
1 , y
∗
2 , · · · , y∗L+1), where y∗i ∈ G (graphemes, in this work).

We assume that the set of labels, G, contains two special labels,
〈sos〉 and 〈eos〉, which denote the start and the end of the sen-
tence, respectively, such that y∗0 = 〈sos〉 and y∗L+1 = 〈eos〉.

An attention-based model [4] consists of three components: an
encoder network which maps input acoustic vectors into a higher-
level representation, an attention model which summarizes the
output of the encoder based on the current state of the decoder,
and a decoder network which models an output distribution over
the next target conditioned on the sequence of previous predic-
tions: P (yu|y∗u−1, y

∗
u−2, · · · , y∗0 ,x). The model is depicted in

Figure 1. The encoder network consists of a deep recurrent neural
network which receives as input the sequence of acoustic fea-
ture vectors, x, and computes a sequence of encoded features,
henc = (henc

1 , · · · ,henc
T ), and is analogous to an acoustic model in

a traditional ASR system. The decoder network - which is analo-
gous to the pronunication and language modeling components in
a traditional ASR system - consists of a deep recurrent neural net-
work which is augmented with an attention mechanism [23]. The
decoder network predicts a single label at each step, conditioned
on the history of previous predictions. At each prediction step, the
attention mechanism summarizes the encoded features based on
the decoder state to compute a context vector, cu, as described in
Section 2.1. The attention model thus corresponds to the component
of a traditional ASR system which learns the alignments between
the input acoustics and the output labels. This context vector is
input to the decoder along with the previous label, y∗u−1. The final
decoder layer produces a set of logits which are input to a softmax
layer which computes a distribution over the set of output labels:
P (yu|y∗u−1, · · · , y∗0 = 〈sos〉).

2.1. Multi-headed Attention

The attention mechanism used in the present work differs from our
previous work [11] in two important ways: firstly, we replace dot-
product attention [4] with additive attention [23] which we find to
be more stable; secondly, we use multiple, independent attention
heads [24] allowing the model to simultaneously attend to multi-
ple locations in the input utterance, which we find to significantly
improve model performance. More specifically, we denote the re-
current hidden state of the decoder network after predicting u − 1
labels as hatt

u−1. The model employsM independent attention heads,
each of which computes attention values, βi

t,u ∈ R, for 1 ≤ i ≤M ,
1 ≤ t ≤ T :

βi
t,u = (ui)T tanh(W ihatt

u−1 + V ihenc
t ) (1)

The individual attention values are then transformed into soft atten-
tion weights through a softmax operation, and used to compute a
summary of the encoder features, ciu:

αi
t,u =

exp(βi
t,u)∑T

s=1 exp(β
i
s,u)

ciu =

T∑
t=1

αi
t,uh

enc
t (2)

The matrices V i, and W i and the vector, ui, are parameters of the
model. Finally, the overall context vector is computed by con-
catenating together the individual summaries from the M attention
heads: cu = [c1u; c

2
u; · · · ; cMu ]. This final context vector is input to

all decoder layers, including the final layer which computes logits.

2.2. Training and Inference

Most attention-based models are trained by optimizing the cross-
entropy (CE) loss function, which maximizes the the log-likelihood
of the training data:

LCE =
∑

(x,y∗)

L+1∑
u=1

− logP (y∗u|y∗u−1, · · · , y∗0 = 〈sos〉,x) (3)

where, we always input the ground-truth label sequence during train-
ing (i.e., we do not use scheduled sampling [25]). Inference in the
model is performed using a beam-search algorithm [21], where the
models predictions are fed back until the model outputs the 〈eos〉
symbol which indicates that inference is complete.

3. MINIMUM WORD ERROR RATE TRAINING OF
ATTENTION-BASED MODELS

In this section we described how an attention-based model can be
trained to minimize the expected number of word errors, and thus
the word error rate. We denote by W(y,y∗) the number of word
errors in a hypothesis, y, relative to the ground-truth sequence, y∗.
In order to minimize word error rates on test data, we consider as our
loss function, the expected number of word errors over the training
set:

Lwerr(x,y
∗) = E[W(y,y∗)] =

∑
y

P (y|x)W(y,y∗) (4)

Computing the loss in (4) exactly is intractable since it involves a
summation over all possible label sequences. We therefore consider
two possible approximations which ensure tractability: approximat-
ing the expectation in (4) with samples [3, 16], or restricting the
summation to an N-best list as is commonly done during sequence-
training for ASR [20].
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3.1. Approximation By Sampling

We can approximate the expectation in (4) using an empirical aver-
age over samples drawn from the model [16]:

Lwerr(x,y
∗) ≈ LSample

werr (x,y∗) =
1

N

∑
yi∼P (y|x)

W(yi,y
∗) (5)

where, yi are N samples drawn from the model distribution. Criti-
cally, the gradient of the expectation in (5) can be itself be expressed
as an expectation, which allows it to be approximated using sam-
ples [16]:

∇LSample
werr (x,y∗) =

∑
y

P (y|x) [W(y,y∗)− E[W(y,y∗)]]∇ logP (y|x)

≈
1

N

∑
yi∼P (y|x)

[W(yi,y
∗)− Ŵ]∇ logP (y|x) (6)

where, we exploit the fact that E[∇ logP (y|x)] = 0, and Ŵ =
1
N

∑N
i=1W(yi,y

∗) is the average number of word errors over the
samples. Subtracting Ŵ , serves to reduce the variance of the gradi-
ent estimates, and is important to stabilize training [16].

3.2. Approximation Using N-best Lists

One of the potential disadvantages of the sampling-based approach
is that a large number of samples might be required in order to ap-
proximate the expectation well. However, since the probability mass
is likely to be concentrated on the top-N hypotheses, it is reasonable
to approximate the loss function by restricting the sum over just the
top N hypotheses. We note that this is typically done in traditional
discriminative sequence training approaches as well, where the sum-
mation is restricted to paths in a lattice [13, 14].

Denote by Beam(x, N) = {y1, · · · ,yN}, the set of N-best hy-
potheses computed using beam-search decoding [21] for the input
utterance x, with a beam-size, N . We can then approximate the loss
function in (4) by assuming that the probability mass is concentrated
on just the N-best hypotheses, as follows:

LN-best
werr (x,y∗) =

∑
yi∈Beam(x,N)

P̂ (yi|x)
[
W(yi,y

∗)− Ŵ
]

Where, P̂ (yi|x) = P (yi|x)∑
yi∈Beam(x,N) P (yi|x)

, represents the distribu-

tion re-normalized over just the N-best hypotheses, and Ŵ is the
average number of word errors over the N-best hypohtheses, which
is applied as a form of variance reduction, since it does not affect the
gradient.

3.3. Initialization and Training

Based on the two schemes for approximating the expected word er-
ror rate, we can define two possible loss functions:

LSample =
∑

(x,y∗)

LSample
werr (x,y∗) + λLCE (7)

LN-best =
∑

(x,y∗)

LN-best
werr (x,y∗) + λLCE (8)

In both cases, we interpolate with the CE loss function using a hyper-
parameter λwhich we find is important to stabilize training (See Sec-
tion 5). We note that interpolation with the CE loss function is simi-
lar to the F-smoothing approach, also known as the H-criterion [26].

Training the model directly to optimize LSample or LN-best with ran-
dom initialization is hard, since the model is not directly provided
with the ground-truth label sequence. Therefore, we initialize the
model with the parameters obtained after CE training.

4. EXPERIMENTAL SETUP

The proposed approach is evaluated by conducting experiments
on a mobile voice-search task. Models are trained on the same
datasets as in our previous works [11, 27]. The training set consists
of ∼15M hand-transcribed anonymized utterances extracted from
Google voice-search traffic (∼12,500 hours). In order to improve
robustness to noise, multi-style training data (MTR) are constructed
by artificially distorting training utterances with reverberation and
noise drawn from environmental recordings of daily events and from
YouTube using a room simulator, where the overall SNR ranges from
0-30dB with an average SNR of 12dB [28]. Model hyperparameters
are tuned on a development set of∼12.9K utterances (∼63K words)
and results are reported on a set of ∼14.8K utterances (∼71.6K
words).

The acoustic input is parameterized into 80-dimensional log-
Mel filterbank features extracted over the 16kHz frequency range,
computed with a 25ms window and a 10ms frame shift. Follow-
ing [29], three consecutive frames are stacked together, and every
third stacked frame is presented as input to the encoder. The same
frontend is used for all models reported in this work.

Two attention-based models are trained in this work, differ-
ing only in the structure of the encoder network: the first model
(Uni-LAS) uses 5 layers of 1,400 uni-directional LSTM cells [30],
whereas the second model (Bidi-LAS) uses 5 layers of 1,024 bi-
directional LSTM cells [31] (i.e., 1,024 cells in the forward and
backward directions, for each layer). The decoder network of both
models consists of two layers of 1,024 LSTM cells in each layer.
Both models use multi-headed attention as described in Section 2.1
with M = 4 attention heads. Models are trained to output a proba-
bility distribution over grapheme symbols: 26 lower case alphabets
a-z, the numerals 0-9, punctuation symbols ,’! etc., and the
special symbols 〈sos〉, 〈eos〉. All models are trained using the
Tensorflow toolkit [32], with asynchronous stochastic gradient de-
scent (ASGD) [33] using the Adam optimizer [34].

5. RESULTS

We investigate the impact of various hyperparameters, and the choice
of approximation scheme by conducting detailed experiments on
the uni-directional LAS model. Results on the bi-directional LAS
model, along with a comparison to a traditional CD-phone based
state-of-the-art system are deferred until Section 5.2.

5.1. Comparison of loss functions: LSample and LN-best

Our first set of experiments evaluate the effectiveness of approxi-
mating the expected number of word errors using samples (i.e., op-
timizing LSample) versus the approximation using N-best lists (i.e.,
optimizing LN-best), as described in Section 3.3. Our observations
are illustrated in Figure 2, where we plot various metrics on a held-
out portion of the training data.

As can be seen in Figure 2a, optimizing the sample-based ap-
proximation, LSample, reduces the expected number of word errors by
∼50% after training, with performance appearing to improve as the
number of samples, N , used in the approximation increases. Un-
like [3], however, as can be seen in Figure 2b, the WER for the
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(a) Expected number of word errors on held-
out set computed using (4) when optimizing
LSample as number of samples, N , varies.

(b) Word error rates on held-out set when
optimizing LSample as a function of the num-
ber of samples, N .

(c) Word error rates on held-out set when
optimizing LN-best as a function of the depth
of the N-best list, N .

Fig. 2: Metrics computed on held-out portion of the training set when optimizing loss functions LSample and LN-best, described in Section 3.3.

Fig. 3: Word error rates on held-out portion of training set when
optimizing LN-best, as a function of the CE-loss interpolation weight
λ, when using N = 4 hypotheses in the N-best list.

top-hypothesis computed using beam search does not improve, but
instead degrades as a result of training. We hypothesize that this is
a result of the mis-match between the beam-search decoding proce-
dure, which focuses on the head of the distribution during each next-
label prediction, and the sampling procedure which also considers
lower-probability paths [17].

As illustrated in Figure 2c, optimizing LN-best (i.e., using the N-
best list-based approximation) significantly improves WER by about
10.4% on the held-out portion of the training set. Further, perfor-
mance seems to be similar even when just the top four hypotheses
are considered during the optimization.

As a final note, we find that it is important to also interpolate
with CE loss function during optimization (i.e., setting λ > 0). This
is illustrated for the case where we optimize LN-best using N = 4
hypotheses in the N-best list in Figure 3.

5.2. Improvements from Minimum WER Training for LAS
Models

We present results after expected minimum WER training (MWER)
of the uni- and bi-directional LAS models described in Section 4 in
Table 1, where we set N = 4 and λ = 0.01. We report results
after directly decoding the models to produce grapheme sequences
using a beam-search decoding with 8 beams (column 2) as well as
after rescoring the 8-best list using a very large 5-gram language
model (column 3). For comparison, we also report results using
a traditional state-of-the-art low frame rate (LFR) [35] CD-phone
based system, which uses an acoustic model composed of four lay-
ers of 1,024 uni-directional LSTM cells, followed by one layer of

System WER(%) Rescored WER(%)
Bi-LAS 7.2 6.6

+MWER (LN-best) 6.9 (-4.2%) 6.2 (-6.1%)
Uni-LAS 8.1 7.3

+MWER (LN-best) 7.5 (-7.4%) 6.7 (-8.2%)
CD-phone (CE + sMBR) 7.5 6.7

Table 1: WERs on the test set after minimum WER training for uni-
and bi-directional LAS models. Relative WER improvements are
indicated in parentheses. The proposed procedure improves WER
by up to 8.2% relative to the CE-trained baseline system.

768 uni-directional cells. The model is first trained to optimize the
CE loss function, followed by discriminative sequence training to
optimize the state-level minimum Bayes risk (sMBR) criterion [13].
The model is decoded using a pruned, 5-gram, first-pass language
model, which uses a vocabulary of millions of words, as well as an
expert-curated pronunciation dictionary. As before, we report results
both before and after second-pass lattice rescoring.

As can be seen in Table 1, when decoded without second-
pass rescoring (i.e., end-to-end training), MWER training improves
performance of the uni- and bi-directional LAS systems by 7.4%
and 4.2% respectively. The gains after MWER training are even
larger after second-pass rescoring, improving the baseline uni-
and bi-directional LAS systems by 8.2% and 6.1%, respectively.
Finally, we note that after MWER training the grapheme-based
uni-directional LAS system matches the performance of a state-of-
the-art traditional CD-phoneme-based ASR system.

6. CONCLUSIONS

We described a technique for training sequence-to-sequence sys-
tems to optmize the expected test error rate, which was applied to
attention-based systems. Unlike [3], we find that sampling-based
approximations are not as effective as approximations based on us-
ing N-best decoded hypotheses. Overall, we find that the proposed
approach allows us to improve WER by up to 8.2% relative. We
find that the proposed techniques allow us to train grapheme-based
sequence-to-sequence models which match performance with a tra-
ditional CD-phone-based state-of-the-art system on a voice-search
task, which when viewed jointly with our previous works [11, 10, 36]
adds further evidence to the effectiveness of sequence-to-sequence
modeling approaches.
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R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: Large-scale machine learning on heterogeneous dis-
tributed systems,” 2015.

[33] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc.
of NIPS, 2011.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. of ICLR, 2015.

[35] G. Pundak and T. N. Sainath, “Lower frame rate neural net-
work acoustic models,” in Proc. of Interspeech, 2016.

[36] C.-C. Chiu, Tara N. Sainath, Y. Wu, R. Prabhavalkar,
P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Go-
nina, N. Jaitly, B. Li, J. Chorowski, and M. Bacchiani, “State-
of-the-art speech recognition with sequence-to-sequence mod-
els,” in Proc. of ICASSP (accepted), 2018.

4843


