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ABSTRACT
Simply feeding of a last hidden layer of the deep neural net-
work (DNN) back to the input layer recently found to be
effective for noise robust acoustic modeling. Such high level
feature strengthens the robustness of DNN based acoustic
model while paying approximately twice the computational
cost. In this paper, we proposed to feed such high level
feature iteratively back to lower layers, which is referred as
multi-scale feedback connection. With this intention, we
firstly extract the high level feature at the last hidden layer
of DNN. Second, this high level feature feed back to a lower
scale features, they then generates a subsequent prediction
as well as a subsequent high level feature. This subsequent
high level feature is further feed down to a lower layers.
We evaluated the proposed approach on both TIMIT and a
large scale internal dataset. The large scale internal dataset
includes voice search and far field dataset. Our finding is two
aspects. First, at equivalent computational costs, the multi-
scale feedback connection outperforms the DNN, the DNN
with skip connection and the DNN with feedback connection.
The improvement is larger on the far field dataset. Second,
pair layers-wise pretraining helps the proposed approach to
converge better.

Index Terms— noise robust ASR, feedback connection,
robust feature extraction, acoustic modeling.

1. INTRODUCTION

Increasing the robustness of automatic speech recognition in
daily environments has attracted a lot of attention recently [1,
2, 3, 4, 5, 6]. While other advanced network architectures in-
cluding convolutional neural network (CNN) [7, 8] and Long
Short Term Memory network (LSTM) [9, 10, 11, 12] have
dominated, simple DNN is prefered for acoustic modeling
tasks in real products due to its simplicity. In DNNs, the in-
formation flows in only one forward direction, from the input
layer, through the hidden layers to the output layer. There are
no cycles or loops in the network. At the output layer, the final
prediction is made whichs based on only the representation at
the last hidden layer. Inspite of its simplicity, DNN’s perfor-
mance is still competitive to other models. In the 200 hours
clean dataset, [9] reported DNN degraded less than 3% rel-
ative WER compared to LSTM and CNN models. Recently,
[13, 14] showed that simple DNN with careful tuning can ob-
tain a competitive result compared to other sophisticated deep
networks for noisy datasets.

Not only feed-forward network without cycles or loops is
fairly competitive to LSTM or CNN but introducing few addi-
tional special connections resulting in combining of features
at different layers is often very helpful. Skip connection [15]
is a type of combining a lower scale feature at a lower layer to
a higher scale feature at a higher layer with the original mo-
tivation of mitigating the vanishing gradient problem. Such
approach is widely used in the computer vision community
and can be found in some studies recently [9, 16, 17, 18, 19].

In the contrast with skip connection, feedback connection
based approaches [20, 21] have two subnetworks making two
corresponding predictions to the same target. The unfolded

form of the feedback connection is depicted in Fig. 1. One
subnetwork is only used to extract the high level feature and
the other one is used to generate the subsequent prediction
based on the same input feature and the high level feature.
The high level feature often is extracted at the output of the
last hidden layer of the first subnetwork. Different to the
skip connection, the feedback connection approaches intro-
duce explicitly multi-objective functions. Two subnetworks
are jointly trained. Initially, [22, 20] first proposed to use the
feedback connection concept for acoustic modeling task. In
[20], each subnetwork has two small networks: one is pre-
diction and other one is correction. The feedback connection
is formed by feeding the output of the hidden layer of the
correction network to the input of the prediction network. In
addition, [21] proposed to share the parameters of two sub-
networks and show an improvement on CHiME3 dataset [23].
Although sharing parameters can be made to reduce the num-
ber of parameters, it still requires a forward pass two times at
inference which turns out to be inefficient.

More recently, [24, 25] proposed to feed such high level
feature before the input layer in order to control the filter
coefficients of beamforming specialized for far-field speech
recognition. More precisely, the hidden units in the deep
LSTM acoustic model are used to assist in predicting the
beamforming filter coefficients. Instead of using the high
level feature from the same time step as [20, 21], the authors
in [24, 25] extract it from the previous time step.

Our concern is two aspects. Firstly, since the feedback
connection depends on the high level feature’s quality, there-
fore we focus on improving the high level feature’s quality.
We argue that when the high quality of high level feature is
obtained, using a large network for the subsequent predictions
is unnecessary therefore we might simplify the subsequent
networks. Secondly, to fully exploit the feedback connection
at all scales, we feed the high level feature not only to the in-
put layer but iteratively back to lower layers. At the first step,
the last hidden layer of the DNN which generates the first
prediction is considered as the high level feature. This high
level feature is then fed back to a lower scale feature which
then generates the subsequent prediction as well as the sub-
sequent high level feature. This subsequent high level feature
is further feed down to a lower layers. All predictions share
the same target. To simplify, the subsequent subnetwork is
replaced by a softmax layer only.

The rest of the paper is organized as follows: We describe
the simple feedback connection and our proposed approach in
Section 2. In Section 3, we evaluate the proposed approach in
various experiments with different datasets. Related work is
discussed in the Section 4.

2. MULTI-SCALE FEEDBACK CONNECTION

2.1. Simple feedback connection

Although, feedback connection can be applied to CNN or re-
current neural network, in the scope of this work, we only
present DNN case. The simple feedback connection has two
subnetworks and is described in Fig. 1. While the first sub-
network is used to extract the high level feature given the in-

4834978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Soft-max

Input	feature

Fully	connected
+	sigmoid

𝐲"#

𝐱"

𝐡"
&'#,#

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Soft-max

𝐲")

𝐱"

𝐡"
&'#,)

Input	feature

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fully	connected
+	sigmoid

Fig. 1. Illustration of the simple feedback connection. All
layers are updated at training. Only the layers (gray color)
are used at inference.

put feature, the subsequent subnetwork simply appends the
high level feature to the same input feature to generate the
subsequent prediction. As the high level feature has rich in-
formation, it does help to guide the input feature to make the
final decision. The network computation can be described as
follows

hL−1,1
n = DNN(xn,W1) (1)

y1
n = softmax(WhL−1,1

n + b) (2)

hL−1,2
n = DNN(xn, σ(W

1hL−1,1
n + b1),W2) (3)

y2
n = softmax(WhL−1,2

n + b) (4)

J =
∑
n

(J1(y
1
n, tn) + J2(y

2
n, tn)) (5)

where xn denotes the input features within the context
frames; n is the central frame index; W1,W2 represents
the parameter of the first and subsequent subnetwork (exclud-
ing the last layers); σ(.) denote the nonlinearity activation
function. hL−1,1

n ,hL−1,2
n are the last hidden layers of the first

and subsequent subnetwork, respectively; hL−1,1
n can also

be refered to the high level feature; y1
n,y

2
n represent the first

and the subsequent prediction, respectively; W,b are the
weight and bias of the last layer of each subnetwork; W1,b1

denotes the weight and bias of the feedback connection. The
overall objective function is the sum of individual objective
functions. tn is the state posterior probability; J1, J2 denotes
the cross-entropy function. Sharing parameters to make W1
identical to W2 tends to give better performance on the noisy
data [21]. However, at the inference, the computation cost
is almost two times compared to the conventional DNN. In
addition, the simple feedback connection exploit the high
level feature hL−1,1

n at single scale input feature only.

2.2. Proposed approach

The goal is to efficiently exploit the high level feature hL−1,1
n

not only at single scale feature (input layer) but also at multi-
scale features(all layers). The network architecture of the pro-
posed approach is shown in Fig. 2. The network consecu-
tively generates predictions to match the same target. After
each prediction, the high level feature is extracted from the
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Fig. 2. Illustration of the multiscale feedback connection. All
layers are updated at training. Only the layers (gray color)
are use at inference.

last hidden layer. The high level feature is then fed back to a
lower scale feature forming a new pair of features to generate
the subsequent prediction. The network computation can be
described as follows

hL−1,1
n = DNN(xn,W) (6)

y1
n = softmax(WhL−1,1

n + b) (7)

hL−1,i+1
n = σ(WihL−1,i

n + bi) + hL−1−i
n (8)

yi+1
n = softmax(WhL−1,i+1

n + b) (9)

where Eq. 6 and Eq. 7 describe the DNN network with L
layers; hL−1,1

n denotes the high level feature which is ex-
tracted from the first prediction y1

n. hL−1,i+1
n represent the

high level feature at the step i + 1. hL−1−i
n denotes the hid-

den layer of DNN.Wi,bi denote the weight matrix and bias
of the feedback connection. σ is a nonlinearity activation
function. yi+1

n represent the ith subsequent prediction. There
are I prediction in total. Note that, while the high level fea-
ture requires a fully connected layer, the lower scale feature
does not. Different to than simple feedback connection, the
large network for generating the subsequent predictions are
replaced by a simple softmax layer which reduces dramaticly
the computation cost. To make the network’s parameter com-
parable with that of DNN, we reduce the number of neurons
of each layer. We did the preliminary experiment by mini-
mizing the total objection function J =

∑
n

∑I
i=1 Ji(y

i
n, tn)

but we failed to make it converge to a better local optimum.
In fact, minimizing the total objective function gives almost
the same performance as a simple DNN. Inherited from the
simple feedback connection, we first pre-train the first pair
of objective function (ex. J =

∑
n

∑2
i=1 Ji(y

i
n, tn)). After

this pre-training is finished, we use the updated parameters of
the network as the initialization for training of the next pair
(eg. J =

∑
n

∑3
i=2(Ji(y

i
n, tn))). This training process is

repeated for a few steps until the final prediction. In the in-
ference, only the final prediction yI

n is used; the rest are not
used.
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3. EXPERIMENT

3.1. Dataset

We conduct the experiments on various dataset. They are
TIMIT task and internal dataset. The large scale internal
dataset includes voice search and far field dataset.

3.1.1. TIMIT

The experiments on TIMIT are based on a phoneme recog-
nition task (aligned with the Kaldi s5 recipe1). The features
considered in this work are standard 39 dimension Mel-
Cepstral Coefficients (MFCCs) computed every 10 ms with
a frame length of 25 ms. The context window is 11 frames
with left and right context frames of 5 frames. The networks
are fed by such 11 frames to predict monophone targets at
their output. A bi-gram language model is used. The imple-
mentation uses Keras2. Optimization uses stochastic gradient
descent method with 0.5 momentum. We found 0.5 momen-
tum works best in this experiments. Learning rate of 0.1
is set for 5 iterations at the begining. When the validation
loss reduces by less than 0.002 between successive iterations,
learning rate is halved. The minibatch size is 256. The code
for TIMIT will be available3.

3.1.2. YJVOICE voice search task

The speech signal was sampled at 16kHz sampling. The
40 dimensional Mel filterbank feature was compute using
25msec window with 10msec frame interval. The input fea-
ture has 11 frames context with 5 left frames and 5 right
frames. The number of DNN outputs is 4003 corresponding
to the number of triphone states obtained by decision tree
clustering of 3-state triphones. The training data consists of
177 hours which is approximately 300k utterances sampled
from service log data and has 63.8M frames. The validation
data consists of 10k utterances and is not included in the
above 300k utterances. Language model has a vocabulary
size of 1M words and a trigram WFSTs is used. The lan-
guage model is a tri-gram model trained using text queries
of the Yahoo Japan Web search engine and transcriptions of
mobile voice search queries. Our decoder is an internally de-
veloped single-pass WFST decoder [26]. Evaluation data was
sampled from real services (Voice Search and Voice Dialog).
Each set of evaluation data was sampled from voice search at
4 different periods. They are denoted as set1, set2, set3 and
set4, respectively.

3.1.3. YJVOICE noisy task

The acoustic model was trained on augmented data. For gen-
erating noisy data, fan noise, tap noise and microwave noise,
were collected in the kitchen and these are added to the orig-
inal audio. For generating noisy reverberated data, noises of
speech and music were convolved with simulated impulse re-
sponses and added to the original audio. The total training
data is 180 hours. The room impulse response was gener-
ated using a room simulator [27]. The rooms were configured
with different widths, lengths and heights. The room’s width
and room’s length were sampled from a uniform distribution
of between 3 and 15 meters. The room’s height was sam-
pled from an uniform distribution between of 2 to 3 meters.
The speaker positions were generated randomly in the room
but the speaker’s heights were chosen randomly in the range

1https://github.com/kaldi-asr/kaldi/tree/master/egs/timit/s5
2https://keras.io
3https://github.com/dzungtran32/MultiscaleFeedback

between 1 to 2 m. The microphone positions were also sam-
pled randomly in the room but the microphone’s heights were
constrained between 0.4 meter and 2 meter. The total num-
ber of room impulse responses is 19800. The evaluation data
consist of 3180 utterances recorded in the kitchen with a mi-
crophone array which has 8 microphones. The distance from
the speaker to microphone is around 1 meter.

3.2. Results

3.2.1. TIMIT

The DNN baseline has 7 layers and each has 1024 nodes. A
Rectified Linear Units (ReLU) activation function is used.
The DNN baseline with skip connection was built based on
the 7 layers DNN by adding the output of the input layer
(after the non-lineariry) to the input of the last layer (after
the non-linearity). Our multiscale feedback connection ap-
proach based on DNN baselines which has a 3 steps feedback
connection where the high level feature is fed to 5th,3rd
and 1st layer sequentially. To reduce the parameters used,
we use only 848 neurons for each layer. It is denoted as
DNN+MulFeedback in Table 1. We also conducted ex-
periment with simple feedback connection (DNN+Feedback)
with two options: With small option (S), each fully connected
layer has only 848 neurons. With large option (L), each fully
connected layer has 1024 neurons. We also conducted ex-
periments with a modification of the simple feedback con-
nection. In this network, all scale features are concatenated
to form a big input feature before feeding to the subsequent
subnetwork. We used only one layer for the second sub-
network. We refer to this as shallow feedback connection
(DNN+shFeedback). We report shallow feedback connec-
tion’s performance with both small (S) (each layers has 848
neurons) and large network (L) (each layer has 1024 neu-
rons). To make a fair comparision, all models use the same
context window of 11 frames. Results on TIMIT are show
in Table 1 : Our baseline DNN has 78.4% accuracy. The
skip connection (DNN + skip) reduce the performance by
0.5% absolute accuracy. Simple feedback connection (DNN
+ Feedback(L)) gives 1% absolute improvement while al-
most doubling the computation cost. Reducing the number
of neurons in each layer to 848, the simple feedback connec-
tion (DNN + Feedback(S)) does not bring any improvement
compared to the simple DNN. With the same computation
cost, concatenating all scale features with simple feedback
connection (DNN+shFeedback(S)) does not help. If the large
network is used, this (DNN + shFeedback(L)) gives 1% WER
absolute compared to DNN. Multiscale feedback connection
(DNN + MulFeedback) outperforms other baselines and gives
1.6% absolute improvement over simple DNN while keeping
the number of parameter unchanged. We concluded that, with
the same computation cost, the multiscale feedback connec-
tion performs best. Both methods (DNN + MulFeedback)
and (DNN + shFeedback(S)) use all scale features extracted
from DNN, however, the (DNN + MulFeedback) performs
better than (DNN + shFeedback(S)). We argue that combin-
ing all scale features with single step high level feature might
not fully exploiting feedback connection since this feature
might be less informative. In Table 2 we show that after
pretraining, the accuracy of the new prediction is increased
showing the important of pretraining. The result with only
a single feedback connection is already better than simple
DNN. Althought the proposed approach is far from reaching
the state of the art on TIMIT dataset [28] in which author
requires additional modifications, we would like to convince
the effectiveness of the multi-scale feedback connection in
the combination with DNN and would like to leave the further
investigation for LSTM model in future work.
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Table 1. Phone accuracy for TIMIT experiment on the devel-
opment and evaluation sets

Model dev eval # param
DNN 7x1024 79.8 78.4 7.3M

DNN+skip 78.6 77.9 7.3M
DNN+Feedback(S) 79.5 78.2 10.0M
DNN+Feedback(L) 80.1 79.4 14.7M

DNN+shFeedback (S) 79.9 78.7 9.3M
DNN+shFeedback (L) 80.0 79.5 13.6M
DNN+MulFeedback 81.0 80.0 7.2M

Table 2. Phone accuracy for TIMIT experiment on the devel-
opment and evaluation sets with different number of feedback
connection with DNN

Model dev eval
1 80.2 79.3
2 80.5 79.6
3 81.0 80.0

3.2.2. YJVOICE voice search

Our acoustic model based neural network is trained using
Tensorflow4. DNN baseline has 5 layers and each layer has
1024 neurons. The sigmoid activation function is used. All
configurations for DNN with skip connection and DNN with
feedback connection are similar to Section 3.2.1. The multi-
scale feedback connection has a 4 step feedback connection
where the high level feature is fed to 4th,3rd,2nd,1st layer
sequentially .The number of parameter used for DNN, DNN
+ skip, DNN + Feedback(S),DNN + Feedback(L), DNN +
shFeedback(S), DNN + shFeedback(L), DNN + MultiFeed-
back are 9.3M, 9.3M, 10.5M,14.6M, 17.1M, 21.6M and 9.3M
respectively. The Table 3 shows the results for each model.
Compared to other baselines, multiscale feedback connection
approach performs consistently better than the DNN baseline
on all evaluation sets and it brings 3% relative WER reduction
compared to DNN baseline while keeping the number of pa-
rameter unchanged. Our skip connection+DNN failed to give
an improvement compared to the DNN case. Using more pa-
rameters, simple feedback connection performs consistently
better than DNN but with only 2% relative WER reduction.
The shallow feedback connection gives no gain compared to
the DNN baseline even though this model use many more
parameters. These results suggest that, for the simple feed-
back connection approaches, second subnetwork should be a
deeper network rather than a shallow network.

4https://www.tensorflow.org

Table 3. Accuracy for noisy YJVOICE voice search experi-
ment on different sets

Model set 1 set2 set3 set4 Ave
DNN 84.37 83.88 90.40 84.86 85.87

DNN+Skip 80.05 78.42 88.07 79.84 81.59
DNN+Feedback(S) 84.14 83.82 90.41 84.75 85.78
DNN+Feedback(L) 84.64 84.18 90.66 85.19 86.16

DNN+shFeedback(S) 84.34 83.75 90.10 84.85 85.76
DNN+shFeedback(L) 84.53 83.48 90.56 84.91 85.87

DNN+Multi-scale 84.97 84.15 90.87 85.24 86.30

Table 4. Accuracy for YJVOICE noisy data experiment.

Model Word Acc Sentence Acc
DNN 60.78 31.35

DNN+skip 59.60 30.09
DNN+Feedback (S) 61.54 31.30
DNN+Feedback (L) 64.09 33.58

DNN+shFeedback (S) 61.02 31.06
DNN+shFeedback (L) 62.29 32.24

DNN+Multi-scale 64.12 34.18

3.2.3. YJVOICE far field data

We conducted the experiment on the far field data. A similar
trend is observed on Table 4. These results are significant
lower than those results in the Table 3. Again, the skip
connection did not give an improvement compared to the
simple DNN. The multiscale feedback connection gives a
significant improvement over the simple DNN. More pre-
cisely, the multiscale feedback connection gives 8% relative
WER reduction compared to the simple DNN. The improve-
ments is much higher in the clean condition. This suggest
the multiscale feedback connection is more suitable for far
field data. The multiscale feedback connection gives sim-
ilar performance compared to simple feedback connection
(DNN+Feedback(L)) while significantly reducing number of
parameters used, similar to that of the simple DNN. Sim-
ilar to Section 3.2.1, (DNN + MulFeedback) and (DNN +
shFeedback(S)) use all scale features extracted from DNN,
however, the (DNN + MulFeedback) performs better than
(DNN + shFeedback(S)).

4. RELATION TO PRIOR WORK

Our proposed approach is most related to related to [20, 21].
Compared to other methods, our proposed approach applied
feedback connection to all scale features while the rest ap-
plied for only the input layer. We confirmed that the pro-
posed method outperform other methods while keeping num-
ber of parameters unchanges reavealing multi-scale exploits
the high level feature effectively. In addition, our proposed
approach is two times faster than [21].

In other words, [24, 25] proposed to extract the high level
feature from the previous time step and therefore no need to
perform inference two times. While [24, 25] feed the high
level feature before the input layer only, our proposed ap-
proach introducing feedback connection at all layers.

5. CONCLUSION

We present a multiscale feedback connection for noise robust
acoustic modeling. We conducted experiment for DNN based
acoustic model and found the proposed approach consitently
outperform skip connection and simple feedback connection
on different dataset including both clean and far field dataset.
We confirmed the proposed approach works better on the far
field data reaveal that multiscale feedback connection is more
robust to noise. With DNN based acoustic model, on the
large scale far field dataset, the proposed approach can ob-
tained 8% relative WER reduction compared to other DNN
baseline while keeping the number of parameters unchanged.
This contribution could be applied to our speech engine with-
out increasing the system’s computational cost. In the future,
we will investige multiscale feedback connection for other ad-
vance models such as CNN or LSTM [24, 25]. In addition, the
number of feedback connection steps could be also further in-
vestigated in the future work.
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