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ABSTRACT

In this paper, we present a factored network-based acoustic modeling
framework with various deep convolutional recurrent neural network
(RNN) architectures for noise-robust automatic speech recognition
(ASR). As the factored network-based acoustic model, we have al-
ready proposed a deep convolutional neural network (CNN)-based
framework. Deep CNNs can emphasize the spatial locality of in-
put speech features, but have no ability to analyze the properties of
long-term speech feature sequences. Therefore, we introduce vari-
ous deep convolutional RNN architectures that achieve both spatial
locality and long-term analysis into our proposed factored network-
based acoustic modeling framework. Through various comparative
evaluations, we reveal that the proposed method successfully im-
proves the accuracy of ASR in noisy environments.

Index Terms— noise robust speech recognition, factored net-
work, deep convolutional RNN architecture, multi-channel input

1. INTRODUCTION

Ensuring robustness to noise in our daily environment is an in-
creasingly crucial problem for the practical use of automatic speech
recognition (ASR). As speech applications on mobile and home
devices continue to proliferate, the noise robustness of ASR should
be improved as far as possible. Although the simplest way to en-
sure noise robustness is the front-end processing of ASR, including
speech or feature enhancement, this can lead to serious perfor-
mance degradation because of the signal distortion in recent deep
neural network (DNN)-based ASR frameworks. This problem is
especially prominent in single-channel processing, which includes
traditional techniques [1, 2], a denoising autoencoder (DAE) [3],
and binary masking [4]. In contrast, techniques with multi-channel
and distortionless processing, e.g., minimum variance distortionless
response (MVDR) beamforming, are known to provide a positive
ASR improvement [5]. Therefore, multi-channel and distortionless
processing are key components of noise robust ASR.

Instead of front-end processing, the framework of neural
network-based acoustic modeling represents another crucial ap-
proach to noise robust ASR. A number of training procedures for
acoustic models have been proposed, such as noise adaptive train-
ing [6], noise aware training [7], and DNN adaptation [8], and the
effectiveness of these techniques has been demonstrated through
various comparative evaluations. In addition, acoustic modeling
with different network architectures has also attracted attention;
in particular, convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are well-known tools for accurate acoustic
modeling.

CNNs emphasize the spatial locality of input speech features
using small-dimensional convolution filters. In many cases, CNN-
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based acoustic models outperform DNN-based methods with fully
connected layers [9]. The advanced CNN-based acoustic model ar-
chitectures, which include a network-in-network (NIN)-based cross-
feature mapping [10, 11], deep CNN [12], and a very deep CNN
with residual network (ResNet) [13], have achieved excellent ASR
performance. RNNs have a recurrent connection from past time
steps, and are suitable for analyzing sequential data such as speech.
Representative RNN architectures include long short-term memory
(LSTM) [14, 15] and gated recurrent unit (GRU) [16, 17], which
are also known to be effective. In addition, LSTM has been applied
to end-to-end ASR systems, e.g., connectionist temporal classifica-
tion (CTC) [18] and attention encoder—decoder [19]. A convolu-
tional LSTM (CLSTM) [20], which combines CNN and LSTM, has
also been developed to solve a spatiotemporal sequence forecasting
problem. In the research field of ASR, acoustic modeling using bi-
directional convolutional LSTM (BCLSTM) [21] and bi-directional
convolutional GRU (BCGRU) [22] has already been proposed. An-
other noteworthy study [23] proposed a novel end-to-end ASR sys-
tem using residual CLSTM.

CNNs, RNNs, and convolutional RNNs are powerful and useful
tools. However, in our opinion, merely using these network architec-
tures is insufficient to ensure the noise robustness of ASR. Thus, we
must address some considerations of building acoustic models with
a suitable architecture. For this purpose, we previously proposed an
acoustic modeling framework based on a factored network with deep
CNN architecture [24]. Here, the factored network, which factors
out some function blocks into separate layers in the network [25],
is able to increase the noise robustness of ASR by building a neural
network with specific roles for each block. Our proposed factored
network-based acoustic model has a multi-channel feature enhance-
ment block, and significantly improves the ASR accuracy in noisy
environments. This acoustic model architecture is similar to a joint
training approach [26, 27, 28], which concatenates the networks of
speech/feature enhancement and acoustic models. The parameters
of the concatenated network are jointly optimized. In the joint train-
ing approach, each network is individually trained in advance based
on each optimization criterion. However, individual network train-
ing sometimes yields a mismatch between each network, resulting
in relatively poor ASR performance. In particular, signal distortion
caused by the speech/feature enhancement network is a serious fac-
tor in this mismatch. In contrast, our proposed framework avoids
this problem because it does not employ individual training.

As mentioned above, our proposed factored network-based
acoustic model has a deep CNN architecture. Although CNNs are
effective neural network architectures for emphasizing spatial lo-
cality, they have no ability to analyze the properties of long-term
speech feature sequences. Therefore, in this paper, we introduce
various deep convolutional RNN architectures into our proposed
factored network-based acoustic modeling framework. Within this
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framework, comparative evaluations show that the proposed method
successfully improves the ASR accuracy in noisy environments by
achieving both spatial locality and long-term analysis.

2. CONVOLUTIONAL RNN ARCHITECTURES

In this section, we briefly review the architectures of RNNs and con-
volutional RNNs such as LSTM, GRU, CLSTM, and CGRU.

2.1. LSTM and GRU

As mentioned in various studies, LSTM and GRU are formulated to
avoid the vanishing gradient problem through a gating mechanism
in their recurrent architectures. In particular, LSTM is a well-known
RNN architecture with a gating mechanism consisting of an input
gate, forget gate, and output gate. LSTM feeds information in the
memory cells back to each gate using peephole connections. With
this architecture, LSTM is able to handle sequential data, i.e., speech
data, efficiently.

In the t-th frame, when the input vector x; and recurrent in-
put vector h;_1 (output vector from the previous frame) are given,
LSTM (with recurrent projection) is formulated as:

it =0 (Waiwe + Whihe—1 + Weic—1 + by) (€]
fir=0(Wgusxi + Whrhi_1 + Weper—1 + by) 2)
cc=f,0¢c-1+% 0 g(Waexe + Whche_1 + be) 3)
ot =0 (Waoxe + Wiohi—1 + Weoer + by) 4)
hi =W (0. ©g(er)) ®)

where i, f,, 0, and ¢; denote the input gate, forget gate, output
gate, and memory cell, respectively. The W terms and b terms de-
note weight matrices and bias vectors, e.g., W ,; denotes the weight
matrix for input vector x; at input gate ¢;. Wi, Wy, and W,
denote diagonal weight matrices for the peephole connections. W,
denotes the weight matrix for recurrent projection. o(-), g(-), and
©® denote the sigmoid function, hyperbolic tangent function, and
Hadamard product, respectively.

Similar to LSTM, GRU has a recurrent architecture, but contains
fewer parameters because of its smaller gating mechanism and lack
of memory cells and peepholes. In GRU, instead of memory cells,
two gates (update gate and reset gate) control the preservation and
output of long-term memory. With the input vector «; and recurrent
input vector h:_1, GRU is derived as:

ze =0 (Wg.xt + Whohio1 +b:) 6)
re =0 (Warxe + Whrheo1 + by) @)
he = g(Wonai + Wop (re © he—1) + by) (8)
hi =2zt Ohs_1+ (1 —2z) ©hs )

where z; and 7 denote the update gate and reset gate, respectively.

2.2. Convolutional LSTM and convolutional GRU

The basic components of CLSTM and CGRU are almost the same
as in LSTM and GRU, respectively. The difference is that the fully
connected operations in the input and recurrent input vectors are re-
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placed by the convolution operation. Thus, CLSTM is derived as:

it =0 (Waix @y + Whix hy1 + Weici—1 + by) (10)
fi=0(Wgypsxxi+Whpssxhi_1+Werei—1 + by) (11)
c=Ff0c-1+1O0g(Wackxi +Whpesxhi—1+b.) (12)
0 =0 Waosxxi+ Whoxhi—1 + Weoer + bo) (13)
hi =Wy (0 ©g(er)) , (14
where * denotes the convolution operation. Note that, in the above
formulation, peephole connections are not given by convolution op-

erations.
On the other hand, CGRU is derived as:

Z2e=0Weexaxe + Whoxhe_1+b.) (15)
e =0 (War sy +Whrshi_1+by) (16)
hy=g(Wanx@+ W (re©@hi1)+by) (17
hi=2ztOhi1+(1—2z:)Ohs. (18)

In CLSTM and CGRU, the output vector h; and memory cell
c; are propagated in each time step, and so the dimension of their
feature maps should be retained. Therefore, zero padding is applied
to each feature map in all convolution operations. In addition, a
stride size of one should be applied in all convolution directions.
With these restrictions, the computational complexity of CLSTM
and CGRU becomes much greater than that of LSTM and GRU.

3. FACTORED NETWORKS

3.1. Basic idea of factored network

Our proposed factored network-based acoustic modeling framework
[24] factors out feature enhancement, delta parameter learning, and
hidden Markov model (HMM) state classification into three specific
network blocks, as shown in Fig. 1. This framework is similar to the
conventional joint training [26, 27, 28]. Here, the joint training in-
dividually trains each block with corresponding supervised signals,
then performs the joint optimization of all parameters. However,
these individual supervised signals are not always optimal for the
whole network. For example, when DAE (which learns a forced
mapping from a noisy feature to a clean feature) is used for the
feature enhancement block, the resulting distortion propagates and
adversely affects the whole joint network. It is often difficult to re-
duce the influence of this distortion, even when joint optimization is
used. To avoid this problem, our proposed framework does not use
any individual training and requires no additional supervised signals
for each block. Namely, the proposed framework defines only the
individual network architectures of each block, and performs over-
all optimization using only the context-dependent (CD) HMM state
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labels, which are the final targets of the acoustic model. With this
framework, we believe that noise robust acoustic models can be im-
proved by building a network with specific roles for each block.

3.2. Acoustic modeling with factored network

As a common setup for acoustic modeling, the input feature parame-
ters are m channels of 40 log mel-filter bank (FBank) features, which
are extracted using a Hamming window with a 25-ms frame length
and 10-ms frame shift. Utterance-wise mean and variance normal-
ization and a context window with 19 (£9) frames are applied to
each utterance.

The classification block is equivalent to the standard DNN-
HMM-based acoustic model, which classifies the HMM state in
each frame of the input feature parameters. This block is taught
to output the posterior probabilities (softmax outputs) of 1,967 CD
HMM states under the frame-wise cross-entropy criterion.

Next, the delta block learns dynamic feature extraction with
time-domain filtering. Usually, the delta parameters Ax; are ex-
tracted using Eq. (19), which is also represented by the convolutional
formulation of Eq. (20). Therefore, the filter parameters dy of delta
parameter extraction can be learnt by the time-domain CNN [29].

- ES)ZI 0 (03:+0 - Jit—o)
2575, 6

e
= E do - Tiye ,

6=—©

Az (19)

(20)

where © denotes the delta window length and do = 0 / 2 Zg):l 62 .

Finally, the enhancement block learns multi-channel feature en-
hancement with 2-dimensional time-frequency filtering. As seen in
Fig. 2, the input feature parameters are given as m channels of noisy
FBank feature maps, and then 2-dimensional CNN-based time-
frequency filtering is applied to each input channel. This method
sums the output of each convolution filter obtained by all channels
[24], and is therefore expected to work in a way that resembles a
beamformer fixed to the front direction.

3.3. Factored network with convolutional RNN architectures

In this paper, we report the results of comparative evaluations be-
tween various factored network-based acoustic models with convo-
lutional RNN architectures, as shown in Fig. 3.

The model shown in Fig. 3(a) is obtained by conventional joint
training with DAE and a clean acoustic model. DAE, i.e., the en-
hancement layer of this model, is trained in advance as a mapping
function from m channels of noisy FBank feature maps to a one-
channel clean FBank feature map, and consists of one 2-dimensional
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time-frequency domain CNN layer and one fully connected layer.
The clean acoustic model consists of a delta block and a classifica-
tion block, and is trained using clean FBank features. Afterwards,
DAE and the clean acoustic model are concatenated and all parame-
ters are jointly optimized using m channels of noisy FBank features.

Figure 3(b) illustrates the structure of our previous factored
network-based acoustic model [24]. In this model, the enhance-
ment, delta, and classification blocks consist of a 2-dimensional
time-frequency domain CNN layer, time-domain CNN layers, and
frequency-domain CNN-NIN layers, and fully connected layers. As
already mentioned, unlike the joint training of Fig. 3(a), this model
concatenates all blocks without individual training and with no ad-
ditional supervised signals. All parameters are optimized using only
the CD HMM state labels.

The models shown in Figs. 3(c)-3(f) are the main evaluation tar-
gets of this paper. In these models, the CNN layers in Fig. 3(b) are
replaced with convolutional RNNs, i.e., CLSTM, BCLSTM, CGRU,
or BCGRU. In the enhancement block, efficient feature enhancement
is realized by convolutional RNN architectures consisting of local
characteristics analysis based on 2-dimensional time-frequency
filtering and long-term sequential analysis based on recurrent con-
nections. Here, the CNN layers of the delta block are not replaced,
because the dynamic feature extraction learning with time-domain
CNN filtering is essential to the delta block. The classification
block stacks one or two convolutional RNN units consisting of a
frequency-domain filtering layer, NIN-based 1 X 1 cross-mapping
layer, and max pooling layer. A CNN-based dimension-reduction
layer is inserted between the last convolutional RNN unit and the
first fully connected layer, because convolutional RNN units output
very-high-dimensional tensors.

4. EXPERIMENTS

4.1. Experimental setup

We conducted ASR evaluations using the CHiME-3 corpus [30],
which was recorded using a tablet device equipped with six micro-
phones. Various noise environments are included in the CHiME-
3 corpus: a public transportation platform (BUS), cafeteria (CAF),
pedestrian area (PED), and street junction (STR). The training set
consists of 1,600 real and 7,138 simulated (simu) utterances spoken
by 4 and 83 different people, respectively. The development (dev)
and evaluation (eval) sets consist of 3,280 and 2,640 utterances, re-
spectively, each containing equal quantities of real and simulated
data. Both the real and simulated sets were spoken by four speakers.
We did not use any of the speech data recorded by a second micro-
phone, because it was located behind the tablet device. Therefore,
the number of input channels was m = 5.

All acoustic models were trained using TensorFlow [31], and
the evaluations (ASR decoding) with trained neural networks were
conducted using the Kaldi toolkit [32]. The target CD HMM state
labels of the training and development sets were obtained using the
latest Kaldi CHiME3 recipe [33]. All networks with recurrent ar-
chitectures used a truncated back-propagation through time (BPTT)
[34] in the training procedure. The step size of the truncated BPTT
was set to 20. The parameters of each network were randomly ini-
tialized and optimized using momentum stochastic gradient descent
with a mini-batch of 320 frames and an initial learning rate of 0.01.
Language modeling also followed the latest Kaldi CHiME3 recipe.
The ASR experiments were performed using fully composed trigram
weighted finite state transducers with the already-mentioned acous-
tic models. The evaluation criterion was the word error rate (WER).
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Fig. 3. Network architectures of acoustic models. “Full n”, “Conv f X t x ch”, “(B)CLSTM f x t x cell,prj”, “(B)CGRU f x t x gt”,
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with gt channels f x ¢ gate filter, and a max pooling layer with f X ¢ sub-sampling, respectively.

Table 1. ASR results with various acoustic models in terms of WER

(%)
dev eval

Network type simu real avg. simu real avg.
Standard AM 10.63 | 11.41 | 11.02 || 12.52 | 19.36 | 15.94

+ Delta block 10.82 | 11.30 | 11.06 | 12.19 | 19.06 | 15.63
Joint training 9.52 10.80 | 10.16 || 12.20 | 18.64 | 15.42
CNN-NIN 9.23 9.84 9.53 11.74 | 16.85 | 14.23
CLSTM-NIN1 8.56 9.73 9.14 10.00 | 16.92 | 13.46
CLSTM-NIN2 7.58 8.75 8.17 1021 | 15.18 | 12.70
BCLSTM-NIN1 7.93 9.02 8.48 9.53 15.68 | 12.61
BCLSTM-NIN2 7.51 8.63 8.07 10.43 | 14.69 | 12.56
CGRU-NIN1 8.31 9.16 8.73 9.73 16.10 | 12.92
CGRU-NIN2 7.94 8.93 8.43 9.99 15.51 12.75
BCGRU-NINT1 8.75 9.71 9.23 10.30 | 18.20 | 14.24
BCGRU-NIN2 8.45 9.50 8.97 11.26 | 18.29 | 14.78

4.2. Experimental results

Table 1 summarizes the ASR results obtained with all acoustic mod-
els, as shown in Fig. 3. In the table, “Standard AM” indicates results
obtained using acoustic model with only the classification block of
Fig. 3(b). We define these results as the baseline, and denote addi-
tional baseline with the delta block as “Standard AM + Delta block.”

The improvements made by “Joint training” are small, whereas
the results obtained with “CNN-NIN" exhibit noticeable improve-
ments. These results reveal that our proposed factored network-
based acoustic modeling is effective for ASR in noisy environments.

As seen in the table, the results obtained with CLSTM or
BCLSTM indicate further significant improvements from “CNN-
NIN.” With these results, we can confirm that spatial locality and
long-term analysis with convolutional RNN architectures is impor-
tant for ASR, and also functions effectively in the factored network-
based acoustic modeling framework. Here, “BCLSTM-NIN2,”
which has a bi-directional network and two stacked convolutional
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RNN units, provided the best results. This model has the most com-
plicated network architecture of the models evaluated in this paper.
Hence, it is difficult to use this model for speech applications that
require real-time processing. The results obtained with “CLSTM-
NIN2” are slightly inferior to those with “BCLSTM-NIN2,” but
“CLSTM-NIN2” has a unidirectional network architecture. As it
also has fewer parameters than “BCLSTM-NIN2,” this model is
suitable for real-time processing.

The results obtained with CGRU exhibit similar trends to those
given by CLSTM. These results are slightly inferior to those from
CLSTM, but exhibit sufficient improvements when compared with
“CNN-NIN.” On the other hand, the results obtained with BCGRU
was insufficient in some conditions. Since CGRU has no recurrent
projection connection in principle, their output feature dimension
becomes much higher than that of CLSTM. In addition, the number
of parameters of BCGRU is twice that of CGRU due to their bi-
directional architecture. Therefore, BCGRU has the huge number
of parameters, it can be considered that this problem influenced the
ASR performance.

5. CONCLUSIONS

We have described a factored network-based acoustic modeling
framework with various deep convolutional RNN architectures for
noise robust ASR. In the framework, we factored out feature en-
hancement, delta parameter learning, and HMM state classification
into three network blocks. By formulating each block with con-
volutional RNNs, the proposed method can achieve both spatial
locality and long-term analysis. We conducted various comparative
evaluations on the deep convolutional RNN architectures. From
these evaluations, we confirmed that our proposed framework suc-
cessfully improves the ASR performance by carefully choosing a
suitable convolutional RNN network architecture. In future, we
plan to build factored networks with very deep convolutional RNN
architectures using the ResNet framework.
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