
EXPLORING THE USE OF GROUP DELAY FOR GENERALISED VTS BASED NOISE
COMPENSATION

Erfan Loweimi, Jon Barker and Thomas Hain

Speech and Hearing Research Group (SPandH), University of Sheffield, Sheffield, UK
{eloweimi1, j.p.barker, t.hain}@sheffield.ac.uk

ABSTRACT

In earlier work we studied the effect of statistical normalisa-
tion for phase-based features and observed it leads to a sig-
nificant robustness improvement. This paper explores the ex-
tension of the generalised Vector Taylor Series (gVTS) noise
compensation approach to the group delay (GD) domain. We
discuss the problems it presents, propose some solutions and
derive the corresponding formulae. Furthermore, the effects
of additive and channel noise in the GD domain were studied.
It was observed that the GD of the noisy observation is a con-
vex combination of the GDs of the clean signal and the addi-
tive noise and also in the expected sense, channel GD tends to
zero. Experiments on Aurora-4 showed that, despite training
only on the clean speech, the proposed features provide aver-
age WER reductions of 0.8% absolute and 4.1% relative com-
pared to an MFCC-based system trained on the multi-style
data. Combining the gVTS with a bottleneck DNN-based sys-
tem led to average absolute (relative) WER improvements of
6.0% (23.5%) when training on clean data and 2.5% (13.8%)
when using multi-style training with additive noise.

Index Terms— Robust ASR, generalised VTS, phase
spectrum, group delay, product spectrum

1. INTRODUCTION
The speech phase spectrum has recently received renewed at-
tention. An expanding body of work propounds that phase
can be employed in a multitude of applications [1], including
in speech reconstruction [2,3], speech enhancement [4,5], ro-
bust speech recognition [6–10] and speaker recognition [11].

We recently developed a source-filter model in the phase
domain [12, 13] which further sheds light on the phase struc-
ture, clarifies how it encodes the speech information and suc-
cessfully separates the vocal tract and the excitation compo-
nents through phase-based signal manipulation. Moreover,
in [14], we scrutinised the statistical characteristics of the
phase spectrum and its representations along the feature ex-
traction pipeline in the clean condition. It was demonstrated
that the unwrapped phase spectrum has a bell-shaped distri-
bution. Also, the efficacy of statistical normalisation of the
phase-based features was evaluated and lead to significant
performance improvement in ASR.

Such gain in robustness motivates us to explore apply-
ing more advanced statistical techniques like VTS [15] and
its generalised version (gVTS) [16, 17] for building robust
phase-based features. In this paper, we investigate the prob-
lems encountered when extending the gVTS framework to the
phase/group delay domain, propose some solutions and derive
the corresponding formulae. Experimental results conducted
on Aurora-4 [18] confirm the success of this approach in deal-
ing with both additive noise and channel distortion.

The rest of this paper is organised as follows. Section
2 is dedicated to deriving the environment model in the GD
domain and examining the effect of the additive noise. In Sec-
tion 3, the problems of extending the (g)VTS formulae to the
GD domain are investigated and some solutions are proposed.
Section 4 derives the gVTS equations and Section 5 contains
the experimental results as well as discussion. Finally, Sec-
tion 6 concludes the paper.

2. ENVIRONMENT MODEL IN THE GROUP DELAY
DOMAIN AND THE ADDITIVE NOISE EFFECT

In the (g)VTS approach to robust ASR, there is a need for
an environment model which shows how the clean signal gets
contaminated with the noise. The general model takes the
form of Y (ω) = X(ω)H(ω) +W (ω) where ω, Y , X , H and
W are the radial frequency, (short-time) Fourier transforms
(FT) of the noisy observation, clean signal, channel and addi-
tive noise, respectively. Assuming speech and noise are un-
correlated and using periodogram power spectrum estimation

|Y |2 = |X|2 |H|2 + |W |2 (1)

where |.|2 denote the periodogram. With some algebraic ma-
nipulation, it can be shown that the group delay of the noisy
observation, τY , takes the following form

τY =
|X|2|H|2

|Y |2
(τX + τH) +

|W |2

|Y |2
τW . (2)

Equation (2) shows the environment model in the group delay
domain and underpins the relation between the group delay of
the noisy observation with other variables.

The additive noise emerges as an additive term in the pe-
riodogram domain whereas in the phase and group delay do-
main it has a different effect. To study its effect and for the
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sake of argument, let us assume that there is no channel dis-
tortion (H = 1). In this case,

τY =
ξ

1 + ξ
τX +

1

1 + ξ
τW = c τX + (1− c) τW (3)

where ξ = |X|2
|W |2 is a priori signal-to-noise ratio (SNR) and

c = ξ
1+ξ . As seen, the noisy observation in the group delay

domain is a convex combination of the clean part and the ad-
ditive noise while in the periodogram domain it is just the sum
of the corresponding power spectra of these two components.

3. DIFFICULTIES WITH (g)VTS IN GD DOMAIN

Having derived the environment model in the group delay do-
main, we now wish to extend the idea of (g)VTS to this do-
main. However, due to some properties of the environment
model and the group delay, there are issues which should be
addressed and resolved in advance.

3.1. Larger Number of Variables
For noise compensation using the (g)VTS framework, as well
as the environment model in the target domain, the statistical
distribution of all the involved variables is needed. While in
the periodogram domain there are only four quantities (1), (2)
shows that in the GD domain the environment model contains
eight variables. Hence, eight probability distribution func-
tions should be estimated. Considering eight variables instead
of four, complicates the compensation process.

To decrease the number of variables, two factors can be
considered: First, the variables that overlap in terms of the
information they carry and are added/multiplied together can
be re-expressed via one variable. Second, a term containing
a variable that tends to zero in the expected sense, e.g. cross-
correlation of speech and noise in (1), may be removed. In
the work presented here we have used both of these points.

In this regard, let us multiply both sides of (2) by |Y |2

|Y |2 τY = |X|2|H|2 (τX + τH) + |W |2 τW . (4)

In general, |Z|2 and τZ are not independent and actually,
for many signals they are closely linked together. There-
fore, it appears reasonable to encapsulate the multiplication
of |Z|2 τZ into a single variable QZ to represent the infor-
mation encoded in each one. This quantity was called group
delay-power product spectrum (PS) in [19]. Accordingly,

QY = QX |H|2 +QH |X|2 + QW (5)

where QZ is the product spectrum of Z for Z ∈ {Y,X,W}.
This decreases the number of variables from eight to six.

3.2. Dynamic Range Compression
The dynamic range of the product spectrum is comparable to
the periodogram. So, it should be compressed using func-
tions like log or power transformation (zα) before statistical
modelling. However, the admissible range for these func-
tions is strictly restricted to the positive values. Although the

power spectrum is always positive, the GD and subsequently
the product spectrum may have negative value in some time-
frequency bins. So, one needs to deal with the negative values
before applying the compression function.

Taking the absolute value is not an appropriate solution
as it makes some of the negative values larger than the small
positive ones. This distorts the relative order/rank of the sam-
ples. The other possible solution which has been used for
compressing the group delay in [7, 12] is to implement com-
pression using sign(x) |x|α, inspired by [20]. Although this
approach preserves the relative order, it poses two problems
for a (g)VTS-based noise compensation process: first, the
clean part can not be factored out

sign(Y )|Y |α = sign(XH +W ) |XH +W |α

6= X̃ Ğ(X̃, H̃, W̃ ) (6)

where Z̃ = sign(Z) |Z|α for Z ∈ {X,H,W}, sign indi-
cates the signum function and Ğ denotes the distortion func-
tion. Second, computing the Jacobians becomes complicated.

Another option which preserves the rank without compli-
cating the factorisation and Jacobian computation is to add a
constant, c, to the product spectrum to ensure it remains posi-
tive in all bins. However, finding the optimal c is problematic:
setting it to the minus of the minimum value of the utterance
causes inter-utterance variability whereas choosing a univer-
sal large enough value causes the compression function to op-
erate in its saturation region, namely (QZ + c)α ≈ cα.

Flooring is another possible solution in which values be-
low a preset threshold are clipped. A potential pitfall of this
technique is that it can lead to information loss. However, this
is tolerable as long as the discarded data plays an insignificant
role. Plotting the product spectrum illustrates that the ma-
jority of the activity occurs on the positive side. Therefore,
flooring can be safely performed with negligible information
loss. The floor function takes the form of floor(z; θz) =
max(z, θz) where θz is a tunable threshold.

After filtering out the negative values, the compression
function can be applied. Using the power transformation

Q̆Y = Q̆X H̆

(
1 + (

Q̆H X̆

Q̆X H̆
)

1
α + (

Q̆W

Q̆XH̆
)

1
α

)α
︸ ︷︷ ︸

Ğ(Q̆X ,Q̆H ,Q̆W ,X̆,H̆)

(7)

where Q̆Z = (floor(QZ ; 0))α, Z̆ = (|Z|2)α for Z ∈
{X,H,W} and Ğ indicates the distortion function.

The dynamic range compression issue is solved but there
are still six variables whereas the environment model in the
power spectrum domain includes only four. The two extra
variables are related to the term QH |X|2 = τH |H|2 |X|2 in
(5). Without this term, the equation resembles that of the pe-
riodogram domain and this facilitates re-deriving the (g)VTS
formulae in the product spectrum domain. In general, neither
|X| nor |H| are zero. However, the spectral behaviour of the
group delay of the channel, τH , is unclear.
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Fig. 1. Channel behaviour in the frequency domain before
and after applying the filter bank, the red curve shows the
average over all utterances. (a) unwrapped phase spectrum,
(b) group delay, (c) FBE{|H|2}, (d) FBE{τH}.

3.3. Channel Phase Spectrum and Group Delay
To investigate the properties of τH(ω), there is a need for a
database of impulse responses of different channels. Here, we
make use of the test sets A and C of the Aurora-4 database
[18]. Both sets include 330 utterances with an average length
of 7.3 seconds. Signals in the test set A were recorded using
a close-talking microphone whereas in the test set C the same
speech was simultaneously recorded by a different desktop
microphone. Reportedly, 18 desktop microphones have been
used in the recording process [18].

For the sake of argument let us assume that the micro-
phone used in the test set A is ideal. This allows us to treat
sets A and C as stereo data and facilitates channel estimation,{

Test Set A ⇒ Y A = X

Test Set C ⇒ Y C = X H
⇒ Ht =

Y Ct
Y At

(8)

where Y A and Y C denote the short-time FT of the corre-
sponding signals in the test sets A and C, H indicates FT of
the channel and t is the frame index. Having computed H for
each frame, the phase spectra as well as the group delay can
be calculated. Averaging over the utterance frames produces
an estimate of the channel behaviour.

Fig. 1 depicts the phase spectrum, group delay and the
filter bank energies (FBE) after passing |H|2 and τH through
the Mel filter bank, computed for all the 330 utterances along
with the overall mean. As seen, in the expected sense, τH
tends to zero before/after the filter bank, which permits the
removal of QH |X|2 from (5). Consequently,

QY ≈ QX |H|2 + QW . (9)

4. gVTS IN THE PRODUCT SPECTRUM DOMAIN

In the conventional VTS, the log function is used for com-
pression whereas in gVTS, the power transformation (or gen-

eralised logarithmic function [21] also known as Box-Cox
transformation [22]) is employed. Applying the power trans-
formation (zα) with parameter α, provides one more degree
of freedom which is helpful in adjusting the statistical proper-
ties of the features. In ASR, it has been utilised for improving
the robustness in features like PLP [23], Genenralised-MFCC
(gMFCC) [21], PNCC [24] and the modified group delay [7].

For implementing the gVTS, one needs the statistical
model of the involved variables, an estimate of the (addi-
tive/channel) noise and an estimation criterion. For modelling
the clean features a GMM withM Gaussians is employed and
each noise type is modelled through a single Gaussian

Q̆X ∼
M∑
m=1

pQ̆Xm N (µQ̆Xm ,ΣQ̆Xm ) (10)

Q̆W ∼ N (µQ̆W ,ΣQ̆W ) H̆ ∼ N (µH̆ ,ΣH̆)

where pQ̆Xm , µ and Σ denote the weight, mean vector and
(diagonal) covariance matrix, respectively. Using minimum
mean square error (MMSE) as the estimation criterion

Q̂MMSE
X = Q̆Y

M∑
m=1

P (m|Q̆Y )
1

Ğ(µQ̆Xm , µQ̆W , µH̆)
(11)

where Ğ denotes the distortion function, defined in (7). The
only missing part in (11) is the P (m|Q̆Y ), and to compute it,
the statistics of Q̆Y should be estimated.

Similar to Q̆X , it is assumed that Q̆Y follows a GMM
distribution with M components. This recasts the problem
into computing the GMM of Q̆Y , namely {pQ̆Ym , µQ̆Ym ,ΣQ̆Ym }.
The statistics of Q̆Y should be computed given those of Q̆X ,
Q̆W , Q̆H and the environment model in the target domain,
namely (7). However, due to the non-linearity, this can not
be done analytically. The first-order Taylor series is used to
approximately linearise this non-linear relationship

Q̆Y ≈ Q̆Y0 + J Q̆X (Q̆X − Q̆X0)

+ J Q̆W (Q̆W − Q̆W0) + JH̆(H̆ − H̆0) (12)

where JZ is the partial derivative (Jacobian) of Q̆Y with re-
spect to Z for Z ∈ {Q̆X , Q̆W , H̆} and (Q̆X0

, Q̆W0
, H̆0) is

the point about which (7) is linearised.
In practice, the linearisation is performed around the

means of the Gaussians, namely (µQ̆Xm , µQ̆W , µH̆ ) i.e., M
points. With some algebraic manipulation

J Q̆Xm =
∂Q̆Y

∂Q̆X
= diag{ µH̆

(1 + V̆m)1−α
} (13)

J Q̆Wm =
∂Q̆Y

∂Q̆W
= diag{( V̆m

1 + V̆m
)1−α} (14)

JH̆m =
∂Q̆Y

∂H̆
= diag{ µQ̆Xm

(1 + V̆m)1−α
} (15)
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where V̆m = ( µQ̆W

µ
Q̆X
m µH̆

)
1
α . Now, the GMM of Q̆Y can be

estimated: linear relationship implies pQ̆Ym ≈ pQ̆Xm and

µQ̆Ym ≈ µQ̆Xm µH̆(1 + (
µQ̆W

µQ̆Xm µH̆
)

1
α )α (16)

ΣQ̆Ym ≈ J Q̆Xm ΣQ̆Xm J Q̆Xm
T

+ J Q̆Wm ΣQ̆W J Q̆Wm
T

+ JH̆mΣH̆JH̆m
T
.

Extension of the modelling to the cepstrum domain can be
easily carried out similarly to [16]. Since the overall per-
formance does not differ noticeably, to save space only the
frequency-domain formulation is provided here.

5. EXPERIMENTAL RESULTS

5.1. Set-up and Parametrisation
ASR experiments were conducted on the Aurora-4 [18]
database. HMMs were trained with 16 components per mix-
ture and all the acoustic models were standard phonetically
state-clustered triphones trained from scratch using a standard
HTK regime [25]. The test set consists of 4 subsets: clean,
(additive) noisy, clean with channel mismatch and noisy with
channel mismatch, referred to as A, B, C and D, respectively.
As well as the clean (CL) training data, Aurora-4 has two
extra sets for multi-style training, namely Multi1 (M1) and
Multi2 (M2). Training data in the former is contaminated with
only the additive noise whereas in the latter both additive and
channel noise are present. For the DNN part, the network
consists of four hidden layers with 1300 nodes, followed by a
bottleneck (BN) [26] layer containing 26 nodes placed before
the output layer. The network was trained using TNET [27].

The feature vector is augmented by c0, delta and accel-
eration coefficients. M was set to 512 and the mean vector
of the additive noise was estimated via the median of the
first/last 50 frames. The channel noise was estimated using
the method we proposed in [17] using three iterations. The
product spectrum (PS) was parametrised in an MFCC-like
framework through replacing the periodogram with the prod-
uct spectrum [19]. A generalised PS (gPS) feature was also
calculated by replacing the log with the power transformation.

5.2. Discussion
Table 1 shows the word error rate (WER) for different test
sets. It provides a remarkable accuracy improvement in the
noisy condition (test sets B-D) along with some WER reduc-
tion in the clean-matched condition (test set A). This means it
enhances both robustness and discriminability of the features.

The optimal value for the parameter α depends on SNR
and distortion type. In general, 0.05 − 0.1 appears to be an
optimal range and the higher the α the better the performance
in the noisy condition and the lower the accuracy in the clean
condition. Note also that, on average, the system trained on
only clean data based on the proposed approach outperforms
the one trained on multi-style training data (both M1 and M2)
using MFCCs.

Table 1. WER for Aurora-4 (HMMs trained on clean data).
Feature α A B C D Ave

MFCC-CL log 7.0 33.7 23.6 49.9 28.6
MFCC-M1 log 9.1 18.4 23.4 35.9 21.7
MFCC-M2 log 10.7 17.0 19.1 31.3 19.5
PS log 7.1 33.7 23.7 49.9 28.6
gPS 0.05 7.0 25.3 23.2 42.9 24.6
gPS 0.1 8.1 22.1 25.6 40.8 24.1
gVTS 0.05 6.5 20.2 13.9 34.3 18.7
gVTS 0.075 7.1 19.8 15.0 34.0 19.0
gVTS 0.1 7.4 19.6 15.4 33.9 19.1

Table 2. WER for BN trained on clean and multi-style data.
Feature α A B C D Ave

BN{gPS}-CL 0.1 5.5 24.2 26.8 45.4 25.5
BN{gVTS}-CL 0.1 4.6 20.6 16.0 36.7 19.5
BN{gPS}-M1 0.1 5.5 11.1 23.5 32.3 18.1
BN{gVTS}-M1 0.1 5.3 12.4 14.3 30.6 15.6
BN{gPS}-M2 0.1 5.7 10.8 13.0 24.7 13.6
BN{gVTS}-M2 0.1 5.6 11.9 12.3 26.5 14.1

Table 2 shows the results of a combined gVTS/DNN
(BN{gVTS}) system in the clean and multi-style conditions.
When only clean data is available for training, DNNs on
their own cannot deal with the variability induced by noise.
However, when combined with gVTS, mismatch condition
performance approaches that of a conventional GMM-HMM
system in mismatch condition while benefiting from using
DNN in the matched condition. In multi-style training, when
only additive noise is available (M1), although DNN (on
its own) leads to a significant performance improvement in
dealing with additive noise, it fails in coping with channel
mismatch. In this case, the gVTS can play a complementary
role. Finally, if the DNN is trained on both additive and
channel noise (M2), although its combination with gVTS
could still be useful in the test sets A and C, on average, the
DNN-only system outperforms the gVTS/DNN system.

6. CONCLUSION

This paper extended the method of additive and channel noise
compensation with generalised Vector Taylor Series (gVTS)
to the group delay-power product spectrum domain. The
problems which this presents were discussed, some solutions
were proposed and the corresponding gVTS formulae were
derived. Experimental results on Aurora-4 showed that a sys-
tem trained only on the clean data using the proposed feature,
on average, outperforms an MFCC-based system trained us-
ing multi-style data. Combination of the gVTS features with
the bottleneck feature in clean training mode resulted in re-
markable WER reductions in the clean-match condition with
minor performance loss in the unmatched condition. This po-
tentially allows robust systems to be built using DNNs even
when only clean training data is available.
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