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ABSTRACT

Current advances in deep learning have resulted in a convergence of
methods across a wide range of tasks, opening the door for tighter in-
tegration of modules that were previously developed and optimized in
isolation. Recent ground-breaking works have produced end-to-end
deep network methods for both speech separation and end-to-end au-
tomatic speech recognition (ASR). Speech separation methods such
as deep clustering address the challenging cocktail-party problem of
distinguishing multiple simultaneous speech signals. This is an en-
abling technology for real-world human machine interaction (HMI).
However, speech separation requires ASR to interpret the speech for
any HMI task. Likewise, ASR requires speech separation to work
in an unconstrained environment. Although these two components
can be trained in isolation and connected after the fact, this paradigm
is likely to be sub-optimal, since it relies on artificially mixed data.
In this paper, we develop the first fully end-to-end, jointly trained
deep learning system for separation and recognition of overlapping
speech signals. The joint training framework synergistically adapts
the separation and recognition to each other. As an additional benefit,
it enables training on more realistic data that contains only mixed sig-
nals and their transcriptions, and thus is suited to large scale training
on existing transcribed data.

Index Terms— deep clustering, speaker-independent multi-
talker speech separation, end-to-end asr, cocktail party problem

1. INTRODUCTION

The introduction of deep learning has lead to significant performance
improvements in many different domains. End-to-end deep network-
based automatic speech recognition (ASR) has recently reached the
state-of-the-art performance obtained by conventional hybrid systems
[1, 2, 3, 4]. End-to-end ASR systems use encoder-decoder recurrent
neural networks (RNNs) to directly convert sequences of input speech
features to sequences of output labels without any explicit intermedi-
ate representation of phonetic/linguistic constructs. Implementing the
entire recognition system as a monolithic neural network removes the
dependence on ad-hoc linguistic resources. It also greatly improves
the ease of discriminative training and integration with other systems.

In this paper, we exploit these properties to extend ASR to recog-
nition of multiple overlapping speakers. Recognizing speech amidst
a cacophony of multiple speakers is a longstanding challenge known
as the cocktail party problem. Solving this problem would enable
dramatically better technology for real-world human machine interac-
tion (HMI). To this end, researchers have long sought an intermediate
goal of single-channel speaker-independent multi-speaker speech sep-
aration, a challenging problem in its own right. However, dramatic
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advances have recently been made by way of the deep clustering
method [5, 6, 7, 8].

Deep clustering trains a powerful deep neural network to project
each time-frequency (T-F) unit to a high-dimensional embedding
vector such that the embeddings for the T-F unit pairs dominated
by the same speaker are close to each other, while those for pairs
dominated by different speakers are farther away. The speaker as-
signment of each T-F unit can thus be inferred from the embeddings
by simple clustering algorithms, to produce masks that isolate each
single speaker. The original method using k-means clustering [5] was
extended to allow end-to-end training through unfolded clustering
steps using a permutation-free mask inference objective [6]. This
objective was first introduced in [5] to train a network directly estimat-
ing T-F masks for comparison with deep clustering, without success.
It was later adopted in [9] as the so-called permutation-invariant
training (PIT). These deep learning methods demonstrate superior
performance over previous attempts at speech separation, including
graphical modeling [10], spectral clustering [11], and computational
auditory scene analysis (CASA) [12] approaches.

Speech separation and ASR are greatly synergistic: speech sepa-
ration requires ASR to interpret the speech for any HMI task. Like-
wise, ASR requires speech separation to work in an unconstrained
environment. These two components can be trained in isolation and
connected after the fact, as in [6]. However, the deep clustering
training paradigm in [6] relies on signal-level ground truth references
for the individual sources. In natural recordings with reverberant
acoustics, such signal-level reference is generally unavailable, and
the only alternative would be simulation. However, data with natural
acoustics and transcriptions of the speech is readily available. This
motivates combining the two systems and jointly training them for
recognition. Before now, completely different types of methods were
used for each task, and such a combination was more difficult to
consider. Now that the best practice for both tasks has converged
toward deep networks, there is little barrier to such combinations.

We develop a fully end-to-end, jointly trained deep learning sys-
tem for separation and recognition of overlapping speech signals. In
the joint training framework, separation and recognition are syner-
gistically adapted to each other, leading to improved performance.
Related work used a hybrid DNN/HMM architecture for ASR, rather
than an end-to-end recognizer and relied on oracle alignments during
training [13]. Our model avoids the use of oracle alignments, but our
experiments do rely on a pre-trained separation system.

2. SPEECH SEPARATION

2.1. Deep clustering

The deep clustering approach trains a deep network to generate an
embedding vector for each T-F element. The objective is to pull
together the embeddings for the T-F unit pairs dominated by the same
speaker, while pushing apart the embeddings of T-F pairs dominated
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by different speakers[5, 6]. At test time, the T-F elements belonging
to the same speaker can be inferred using a clustering algorithm on
the learned embeddings.

More formally, for a mixture spectrogram with N T-F elements
and C speakers we can define a label matrix Y ∈ RN×C such that
yi,c = 1, if T-F element i is dominated by source c, and yi,c = 0
otherwise. The ith row, yi, is thus a unit-length indicator vector
for the speaker that dominates T-F element i. The ordering of the
C speakers has an arbitrary permutation, whereas the ideal affinity
matrix, Y Y T, provides a permutation-invariant representation of the
same information. This matrix (Y Y T)i,j = 1 if T-F elements i and
j are dominated by the same speaker, and otherwise (Y Y T)i,j = 0.
The network learns to produce a matrix V ∈ RN×D composed of
unit-length D-dimensional embedding vectors vi such that the affin-
ity matrix V V T approximates the ideal affinity matrix. At training
time, deep clustering minimizes the following objective function with
respect to V for each training mixture:

LDC(V, Y ) = ‖V V T − Y Y T‖2F
= ‖V TV ‖2F + ‖Y TY ‖2F − 2‖V TY ‖2F, (1)

where the embedding matrix V ∈ RTF×D and the label matrix
Y ∈ RTF×C are respectively obtained by vertically stacking all the
embedding vectors vi and all the one hot vectors yi in an utterance.
Using powerful deep neural networks, this algorithm has obtained re-
markable improvements over conventional methods on single-channel
speech separation tasks [5, 6].

Our recent study [14] found that further improvements could be
obtained using an alternative cost function based on whitening the
embeddings in a k-means objective:

LDC,W(V, Y ) = ‖V (V TV )−
1
2 − Y (Y TY )−1Y TV (V TV )−

1
2 ‖2F

= D − tr
(
(V TV )−1V TY (Y TY )−1Y TV

)
. (2)

As proposed in [14], we use soft weights to reduce the influence
of T-F bins with very low energy at training time. We use here
magnitude ratio weights WMR defined as the ratio of the mixture
magnitude at T-F bin i over the sum of the mixture magnitudes at
all bins within an utterance: wi = |xi|/

∑
j |xj |, where |x| is the

magnitude of the mixture.

2.2. Chimera++ network

Permutation-free objectives have been used in several papers [5, 6,
15] to train conventional mask-inference (MI) networks for speech
separation. While these objective functions were originally based
on the magnitude spectrum approximation (MSA), [16] showed that
the phase-sensitive spectrum approximation (PSA) outperforms MSA
for separating speech from non-stationary interference, we use a
(truncated) PSA objective similarly to [15].

In [14], we found that using a logistic sigmoid activation for the
last layer together with an objective function measuring a truncated
phase-sensitive approximation using the L1 distance led to the best
results among MI networks:

LMI,tPSA,L1 =

min
π∈P

∑
c

∥∥∥M̂c ◦ |X| − T
|X|
0

(
|Sπ(c)| ◦ cos(θX − θπ(c))

) ∥∥∥
1
, (3)

where P is the set of permutations on {1, . . . , C}, |X| and θX are
the magnitude and phase of the mixture, M̂c the c-th estimated mask,

|Sc| and θc the magnitude and phase of the c-th reference source, and
Tba(x) = min(max(x, a), b).

In [17], a chimera network is introduced that combines deep
clustering with mask inference in a multi-task learning fashion, lever-
aging the regularizing property of the deep clustering loss and the
simplicity of the mask-inference network. In the original chimera net-
work, the mask inference branch grows out from the embedding layer.
In [14], we proposed to use an improved architecture, referred to as
chimera++, which predicts a mask directly from the BLSTM hidden
layer output, yielding a conceptually simpler and computationally
faster network. The speaker separation loss we are minimizing is a
weighted sum of the deep clustering loss and the MI loss:

Lss = αDCLDC,W(V, Y ) + (1− αDC)LMI,tPSA,L1 (4)

At run time, we only need the MI output to make predictions.

3. SPEECH RECOGNITION

We review the hybrid CTC/attention architecture which we intro-
duced in [18, 3, 19] to better utilize the strengths and mitigate the
shortcomings of each approach.

3.1. Connectionist temporal classification (CTC)

CTC [20] maps an input sequence to an output sequence of shorter
length. We assume here that the input to our model is a T -length
sequence of frame activations X = {xt ∈ Rd|t = 1, · · · , T} and
the output is an L-length character sequence C = {cl ∈ U|l =
1, · · · , L} from a set of distinct characters U . CTC introduces a
”blank” symbol to give a one-to-one correspondence between inputs
X and outputs Z = {zt ∈ U ∪ <blank>|t = 1, · · · , T}. By us-
ing conditional independence assumptions, the posterior distribution
p(C|X) can then factorized as follows:

p(C|X) ≈
∑
Z

∏
t

p(zt|zt−1, C)p(zt|X)︸ ︷︷ ︸
,pctc(C|X)

p(C) (5)

The CTC objective is defined as Lctc = − log pctc(C|X), which does
not include the language model p(C).

We use a stacked BLSTM network to obtain the framewise poste-
rior distribution p(zt|X) conditioned on all inputs X:

p(zt|X) = Softmax(Lin(ht)) (6)
ht = BLSTM(X). (7)

3.2. Attention-based encoder-decoder

Attention-based methods use the chain rule to directly estimate the
posterior p(C|X) without making conditional independencce as-
sumptions as with CTC:

patt(C|X) =
∏
l

p(cl|c1, · · · , cl−1, X). (8)

We define Latt = − log patt(C|X) as the attention-based objective.
In Eq. (8), p(cl|c1, · · · , cl−1, X) is obtained by

p(cl|c1, · · · , cl−1, X) = Decoder(rl,ql−1, cl−1) (9)
ht = Encoder(X) (10)
alt = Attention({al−1}t,ql−1,ht) (11)
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rl =
∑
t

altht. (12)

Eq. (10) converts inputs X = {xt}Tt=1 into framewise hidden vec-
tors ht in an encoder network where Encoder(X) , BLSTM(X).
Attention(·) in Eq. (11) is based on a location-based attention mech-
anism with convolutional features, as described in [21]. A decoder
network is another recurrent network conditioned on the previous
output cl−1, the hidden vector ql−1, and the character-wise hidden
vector rl. We use Decoder(·) , Softmax(Lin(LSTM(·))).

3.3. Multitask learning

Attention-based models make predictions conditioned on all the pre-
vious predictions, and thus can learn language-model-like output
contexts. However, without strict monotonicity constraints, these
attention-based decoder models can be too flexible and may learn
sub-optimal alignments or converge more slowly to desirable align-
ments.

In the hybrid system, the BLSTM encoder is shared by both the
CTC and attention decoder networks in Eqs. (7) and (10). Unlike the
attention model, the forward-backward algorithm of CTC enforces
monotonic alignment between speech and label sequences during
training. This approach helps to guide the system toward monotonic
alignments. The multi-task objective to be minimized becomes:

LASR = −
(
λ log pctc(C|X) + (1− λ) log patt(C|X)

)
, (13)

with a tunable parameter λ : 0 ≤ λ ≤ 1.

3.4. Decoding

The inference step of attention-based speech recognition is performed
by output-label synchronous decoding with a beam search. However,
we also take the CTC probabilities into account to find a better aligned
hypothesis to the input speech [19], i.e. the decoder finds the most
probable character sequence Ĉ given speech input X , according to

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1− λ) log patt(C|X)} . (14)

In the beam search process, the decoder computes a score of each
partial hypothesis. During the beam search, the number of partial
hypotheses for each length is limited to a predefined number, called a
beam width, to exclude hypotheses with relatively low scores, which
dramatically improves the search efficiency.

4. JOINT SPEECH SEPARATION AND RECOGNITION

To connect these network components into a joint system, we use
the masks output from the chimera++ network to extract each source,
from which we compute the log-mel filterbank features for recog-
nition. In order to choose the source-transcript permutation during
training, two natural options are to use either the permutation πsig

that minimizes the signal-level approximation error for the separated
signals, or the permutation πasr that minimizes the ASR loss:

πsig = arg min
π∈P

∑
c

∥∥M̂c ◦ |X| − |Sπ(c)|
∥∥2

F
, (15)

πasr = arg min
π∈P
−
∑
c

(
λ log pctc(Cc|Xπ(c))

+ (1− λ) log patt(Cc|Xπ(c))
)
. (16)
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deep clustering mask inference
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CTC attention
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Fig. 1. End-to-end separation and recognition network

While we use πsig in our experiments, πasr has the advantage that it
does not rely on the availability of a ground truth for the separated
signals, and would thus allow for training on larger and acoustically
more realistic data where only transcription-level labels are available.

5. EXPERIMENTAL SETUP

We evaluate our algorithms on the publicly-available wsj0-2mix
dataset [5], which has been used by many studies since the debut of
the deep clustering algorithm. It contains ∼30h training data and
∼10h validation data, both of which are created by randomly mixing
two utterances of two randomly-chosen speakers from the WSJ0 train-
ing data (si tr s). Each mixture of the ∼5h testing data is generated
by mixing two utterances from two randomly-chosen speakers in the
WSJ0 validation (si dt 05) and testing set (si et 05). The SNR of
each mixture is randomly drawn between 0 dB and 10 dB. There is
no overlap between the speakers in the training and testing set. The
sampling rate is 8 kHz. Our experiments consist of speech separation,
speech recognition, and joint speech separation and recognition.1

5.1. Speech separation

The signal analysis uses a 32 ms square-root Hann window, with an 8
ms shift between frames. The 256-point DFT is performed to extract
129-dimensional log-magnitude features of each frame as inputs. The
chimera++ network contains a 4-layer BLSTM network with 600
hidden units per direction (total 1200) with a dropout rate of 0.3
between layers. The deep clustering head has embedding dimension
D = 20 following [14]. The objective is given by LSS in Eq. (4).

Adam [23] is applied with η = 0.001, β1 = 0.9, β2 = 0.999,
and ε = 1 × 10−8, batchsize is 16, and gradient clipping is used.
After each epoch, the loss is calculated with respect to a held-out
development set. If performance on the development set plateaus, η

1Our system is implemented using Chainer [22].
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is decayed by a factor of 0.5. The model corresponding to the epoch
with the lowest development set loss is evaluated on the test set.

At evaluation, the mask-inference head of the chimera++ network
predicts source masks from the mixture. These masks are applied to
the complex spectrum of the mixture to retrieve the predicted source
signals.

5.2. Speech recognition

The recognition features are 120-dimensional log-mel filterbank
coefficients+∆+∆∆s. The encoder network is a 3-layer BLSTM.
Each layer has 256 hidden units per direction (total 512) followed
by a 256 unit projection. Subsampling is performed after the first
and second layers such that an input of length T yields output of
length T/4. The decoder network is a 1-layer LSTM with 256 hidden
units. A location-aware attention scheme [21] is used with 10 convo-
lutional filters of dimension 100. Network weights are drawn from
the uniform distribution between −0.1 and 0.1. In all experiments,
the CTC/Attention weight λ is set to 0.1 in LASR. The final soft-
max layers in CTC and attention-based output have 51 dimensions
(including characters, <sos>, <eos>, and <blank>).

Two recognition networks are considered: CLN-ASR and IBM-
ASR. The CLN-ASR model is trained from clean sources, while the
IBM-ASR model is trained from sources estimated by applying the
ideal binary mask for each source to the mixtures.

Adadelta [24] is applied with ρ = 0.95 and ε = 1 × 10−8,
batchsize is 20, and gradient clipping is used. After each epoch, the
loss is calculated on a held-out development set. If performance on
the development set plateaus, ε is decayed by 0.5. The model epoch
with lowest development set loss is evaluated.

During decoding and evaluation, a beam search [25] is used with
a beam size of 20. The highest probability sequences output by CTC
are weighted by 0.1 to help further inform the system [18]. We report
results both before and after language model (LM) rescoring [3].

5.3. Joint speech separation and recognition

To facilitate joint training, networks trained as in Sections 5.1 and 5.2
warm-start the joint system for further fine-tuning. These fine-tuning
experiments include: (i) training for recognition with the separation
network fixed, (ii) training the whole system for both separation and
recognition, and (iii) training the whole system exclusively towards
the objective of speech recognition. We compare their performance
with the simple combination of the two systems without fine-tuning.

When training experiments (i) and (iii), Adadelta updates the
recognition network and the whole network, respectively, under
the objective LASR. For experiment (ii), two optimizers are used:
Adam updates the separation network under the weighted objective
LSS+ASR = LSS + αASRLASR where αASR = 0.01, and Adadelta up-
dates the recognition network under the objective LASR. Adam’s
η = 0.0001, but otherwise optimizer parameters are the same as in
Section 5.1 & 5.2. During training, the source-transcript permutation
is determined as the one that minimizes signal-level error, πsig in
Eq. (15). Decoding and evaluation are done as in Section 5.2.

6. EVALUATION RESULTS

We train a separation network (SS) as described above in Section 5.1,
achieving an SDR of 10.7 dB, on par with our previously reported re-
sults [6, 14]. We train two recognition networks as described above in
Section 5.2, one on the original clean sources (CLN) without mixing,
and the other on oracle separated signals obtained by applying ideal

Table 1. Oracle and baseline ASR results (CER, %, no LM→ with
LM rescoring) for system trained and tested on clean (CLN) data,
system trained and tested on data obtained by applying ideal binary
masks (IBM) to the mixture, and system trained on CLN and tested
on the mixtures (MIX).

training test eval
CLN CLN 9.8→ 6.6
IBM IBM 11.4→ 9.0
CLN MIX 79.2→ 79.1

Table 2. CER Evaluation Results (no LM→ with LM rescoring)

Fine-tuning CLN-ASR-PT IBM-ASR-PT
SS ASR Loss dev eval dev eval
× × – 35.8→34.1 34.5→32.0 25.3→24.2 25.1→23.1
× X LASR 17.6→18.9 18.0→18.0 17.4→18.7 17.9→17.9
X X LSS+ASR 16.7→16.3 16.9→15.4 15.3→14.0 15.8→13.9
X X LASR 14.7→13.3 15.2→13.2 14.4→13.6 15.2→13.4

binary masks (IBM) to the mixture. The CLN-trained model obtains
9.8 % CER when evaluated on the clean sources of the evaluation set,
while the IBM-trained model obtains 11.4 % CER when evaluated
on the oracle IBM-separated test mixtures. These systems provide
initial guidance to the joint system to speed up training. Joint systems
whose ASR part is pretrained on clean sources and IBM sources are
denoted by CLN-ASR-PT and IBM-ASR-PT, respectively.

Table 2 shows the performance of combined separation and recog-
nition systems under different training conditions. For all networks,
the chimera++ part is initialized using the same pretrained separation
network described above, while the ASR part is initialized from either
CLN-ASR-PT or IBM-ASR-PT as indicated in the table. Without
fine-tuning (SS: ×, ASR: × in Table 2), the system trained on clean
data performs poorly, at 34.5% CER. The one trained on IBM data
performs significantly better, with 9.4% absolute CER reduction. This
indicates a clear advantage to the IBM-ASR-PT model in handling
separated data, which could be expected since it was trained on binary-
masked mixtures. After fine-tuning the ASR component with fixed
separation (SS: ×, ASR: X, LASR), performance improves while the
gap in performance between the CLN-ASR-PT and IBM-ASR-PT
models is closed significantly. Fine-tuning the whole network using
both separation and recognition objectives (SS: X, ASR: X, LSS+ASR)
achieves further relative improvements of 8% CER and 10% CER
over the model with fixed SS for CLN-ASR-PT and IBM-ASR-PT,
respectively. Finally, fine-tuning the whole network using only the
recognition objective gives the best performance, at 15.2% CER for
both CLN-ASR-PT and IBM-ASR-PT models, with no longer a gap
in performance between the two pretraining schemes.

Language model rescoring often leads to significant improve-
ments, of more than 2% absolute decrease in CER for the best models.

7. FUTURE DIRECTIONS

While we have shown promising results for end-to-end multi-speaker
recognition, our method requires signal-level references for pre-
training. Future work should investigate training on larger data with
only transcription-level labels. Another interesting direction is to
expand the system to work with an arbitrary number of sources, to
support even more challenging and general scenarios.
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