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ABSTRACT

Recent advances in speech synthesis suggest that limitations such
as the lossy nature of the amplitude spectrum with minimum phase
approximation and the over-smoothing effect in acoustic modeling
can be overcome by using advanced machine learning approaches.
In this paper, we build a framework in which we can fairly compare
new vocoding and acoustic modeling techniques with conventional
approaches by means of a large scale crowdsourced evaluation.
Results on acoustic models showed that generative adversarial
networks and an autoregressive (AR) model performed better than
a normal recurrent network and the AR model performed best.
Evaluation on vocoders by using the same AR acoustic model
demonstrated that a Wavenet vocoder outperformed classical source-
filter-based vocoders. Particularly, generated speech waveforms
from the combination of AR acoustic model and Wavenet vocoder
achieved a similar score of speech quality to vocoded speech.

Index Terms— speech synthesis, deep learning, Wavenet,
general adversarial network, autoregressive neural network

1. INTRODUCTION

Text-to-speech (TTS) synthesis aims at converting a text string into
a speech waveform. A conventional TTS pipeline normally includes
a frond-end text-analyzer and a back-end speech synthesizer, each of
which may include multiple modules for specific tasks. For example,
the back-end based on statistical parametric speech synthesis (SPSS)
uses statistical acoustic models to map linguistic features from the
text-analyzer into compact acoustic features. It then uses a vocoder
to generate a waveform from the acoustic features.

Recent TTS systems have well adopted to the impact of deep
learning. First, frameworks different from the established TTS
pipeline are defined. One framework merges the text-analyzer
and acoustic models into a single neural network (NN), where the
input text is directly mapped into acoustic features, e.g., by Tactron
[1] and Char2wav [2]. Another framework is the unified back-
end represented by Wavenet [3] that directly converts the linguistic
features into a waveform. There are also novel NN back-ends
without the use of normal acoustic features, vocoders [4, 5], or
duration model [6]. In parallel to these new frameworks, modules
for the conventional TTS pipeline have also been developed.
For instance, acoustic models based on the generative adversarial
network (GAN) [7] and autoregressive (AR) NN [8] have been
reported to alleviate the over-smoothing effect in acoustic modeling.
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Fig. 1: Flowchart for seven speech synthesis methods compared in
this study. This figure hides the band aperiodicity (BAP) features
and RNN that generates noise mask for PML vocoder.

There is also the Wavenet-based vocoder [9] that uses deep learning
rather than signal processing methods to attain waveform generation.

Given the recent progress with TTS, we think it is important
to understand the pros and cons of the new methods on the basis
of common conditions. As an initial step, we compared the new
methods that could easily be plugged into the SPSS-based back-
end of the classical TTS pipeline. These methods were divided
into two groups, and thus the comparison included two parts. The
first part compared acoustic models based on four types of NN,
including the normal recurrent neural network (RNN), shallow AR-
based RNN (SAR), and two GAN-based postfilter networks [7] that
were attached to the RNN and SAR. The second part compared
waveforms generation techniques, including the high-quality source-
filter vocoder WORLD [10], another synthesizer based on the log-
domain pulse model (PML) [11], WORLD plus the Griffin-Lim
algorithm for phase recovery [12], and the Wavenet-based vocoder.

Section 2 explains the details on the selected methods used for
comparison. Section 3 explains the experiments and Section 4 draws
conclusions.

2. SPEECH SYNTHESIS METHODS

This comparison study was based on perceptual evaluation of
synthetic speech. The selected acoustic models and waveform
generation methods were combined into the seven speech synthesis
methods given in Fig. 1, where SAR-Wa, SAR-Pm, SAR-Pr, and
SAR-Wo use the same acoustic models but different waveform
generation modules, while SAR-Wo, GAS-Wo, GAR-Wo, and
RNN-Wo use the same WORLD vocoder but differ in the acoustic
model to generate the Mel-generalized coefficients (MGC) and band
aperiodicity (BAP). The F0 for all the methods is generated by a
deep AR (DAR) model [13]. The oracle duration is used for all the
methods. Neither formant enhancement nor MLPG [14] was used.
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2.1. Waveform generation

2.1.1. Relationship between acoustic features and waveforms

A vocoder in a conventional speech synthesis method synthesizes
the waveform given the generated acoustic features by the acoustic
model. However, the synthesized waveform may be unnatural even
if the acoustic model is perfect because the acoustic features may be
imperfectly defined. For example, to extract cepstral features from
the waveform, the first step is to apply discrete Fourier transform
(DFT) to the windowed waveform and then acquire the complex
spectrum, sn = [sn,1, · · · , sn,F ] ∈ CF . Here, sn,f = an,f +
ibn,f ∈ C is a complex number, n is the index of a speech frame,
and f ∈ [1, F ] is the index of a frequency bin. The next step
is to compute the power spectrum, pn = [pn,1, · · · , pn,F ] =
diag(sHn sn), where pn ∈ RF . Note that H is the Hermitian
transpose, and then pn,f = |sn,f |2 = an,f

2 + bn,f
2 ∈ R. Finally,

cepstral feature cn ∈ RM , where M < F , is acquired after
inverse DFT plus filtering and frequency warping on log-amplitude
spectrum [log

√
pn,1, · · · , log√pn,F ]. Notice that pn encodes the

amplitude of sn while ignoring the phase. Therefore, sn and the
waveform cannot be accurately reproduced only given cn.

Conventional vocoders assume that sn has a minimum phase in
order to approximately recover sn from cn. However, the speech
waveform is not merely a minimum-phase signal. One solution is to
model the phase as additional acoustic features [15, 16]. Another
way is to directly model complex-valued sn by using complex-
valued NN [17] or restricted Boltzman machine [18]. Alternatively,
a statistical model such as the Wavenet-based vocoder [9] can be
used rather than using a deterministic vocoder. Such a vocoder may
learn the phase information not encoded by the acoustic features.

This work used a conventional vocoder called WORLD [10]
as the baseline. It then included a phase-recovery technique [12],
a waveform synthesizer based on a log-domain pulse model [11],
and a Wavenet-based vocoder for comparison. Complex-valued
approaches may be included in future work.

2.1.2. Deterministic vocoders

The WORLD vocoder [10] is similar to the legacy STRAIGHT
vocoder [19] and uses a source-filter-based speech production model
with mixed excitation. It also assumes a minimum phase for the
spectrum. By using the procedure in Sec. 2.1.1 reversely, WORLD
converts the cepstral features, cn, given by the acoustic model into
a linear amplitude spectrum. Then, WORLD creates the excitation
signal by mixing a pulse and a noise signal in the frequency domain,
where each frequency band is weighted by a BAP value. Finally, it
generates a speech waveform based on the source-filter model.

Since WORLD assumes a minimum phase, this work included a
phase-recovery method that may enhance the phase of the generated
waveform by WORLD. This method re-computes the amplitude
spectrum given the generated waveform and then applies the Griffin-
Lim phase-recovery algorithm. Note that this method is different
from that in our previous work [5, 20] where phase-recovery was
directly conducted on the generated amplitude spectrum.

This work also included the pulse model in the log-domain
(PML) [11] as another waveform generator. One advantage of
PML is that it avoids voicing decision per frame and may alleviate
the perceptual degradation caused by voicing decision errors. In
addition, PML may better represent noise in voiced segments. The
PML and WORLD in this work used the same generated spectrum
as input. The noise mask used by PML is generated by another RNN
given input linguistic features, which it is not indicated in Fig. 1.

2.1.3. Data-driven vocoder

Besides the deterministic vocoders, this work included a statistical
vocoder based on Wavenet [9, 21]. Suppose ot is a one-hot vector
representing the quantized waveform sampling point at time t, the
Wavenet vocoder infers the distribution P (ot|ot−R:t−1,at) given
the acoustic feature at and previous observations ot−R:t−1 =
{ot−R, · · · ,ot−1}, where R is the receptive field of the network.
In this work, at contained the F0 and MGC. Note that, while natural
at is used to train the vocoder, ât generated by the acoustic model
is used for waveform generation.

During generation, ôt is usually obtained by random sampling,
i.e., ôt ∼ P (ot|ôt−R:t−1, ât). However, we found that the
synthetic waveform sounded better when samples in the voiced
segments were generated as ôt = argmaxot p(ot|ôt−R:t−1, ât).
This method is referred to as the greedy generation method. Fig. 4
plots the spectrogram and the instantaneous frequency (IF) [22, 23]
of generated waveforms from the two methods, i.e., SAR-Wa
(greedy) and SAR-Wa (random). Compared with random sampling,
the greedy method generated more regular IF patterns in voiced
segments. It perceptually made the waveforms sound less trembling.
One reason for this may be that the ‘best’ generated ôt was
temporally more consistent with ôt−R:t−1. Note that samples in the
unvoiced parts were still randomly drawn, and the voiced/unvoiced
state for each time could be inferred from the F0 in ât.

2.2. Neural network acoustic models

The NN-based acoustic models included in this work aims at
inferring the distribution of the acoustic feature sequence a1:N =
{a1, · · · ,aN} conditioned on the linguistic feature l1:N =
{l1, · · · , lN} in N frames. The baseline RNN, whether it has a
recurrent output layer or not, defines the distribution as

p(a1:N |l1:N ) =

N∏
n=1

p(an|l1:N ) =

N∏
n=1

N (an;hn, I), (1)

where N (·) is the Gaussian distribution, I is the identity matrix,
hn = HΘ(l1:N , n) is the outcome of the output layer at frame n,
and Θ is the network’s weight. For generation, â1:N can be acquired
by using a mean-based method that sets â1:N = h1:N .

A shortcoming of RNN is that the across-frame dependency in
a1:N is ignored. Hence, this work included a model that takes into
account the dependency in a causal direction [8]. This model, which
is called shallow AR (SAR), defines the distribution as:

p(a1:N |l1:N ) =

N∏
n=1

p(an|an−K:n−1, l1:N ) (2)

=

N∏
n=1

N (an;hn + FΦ(an−K:n−1), I). (3)

This model usesFΦ(an−K:n−1) =
∑K

k=1 βk�an−k+γ to merge
the acoustic features in the previous K frames and then changes
the distribution for frame n, which builds the causal across-frame
dependency. Another deep AR (DAR) model similar to SAR can be
defined [13]. DAR in this work was only used to model the quantized
F0 for all the experimental methods, and thus is not explained here.

As RNN and SAR are trained by using the maximum-likelihood
criterion and then generate by using the mean-based method, they
may not produce acoustic features with natural textures. Therefore,
this work also included the GAN-based postfilter [7] to enhance
RNN and SAR. The GAN discriminators in this work did not crop
the input acoustic features into small patches, which is different from
original work. Instead, they made a true-false judgment every frame.
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Fig. 2: Structure of acoustic models. Linear, FF, H-softmax, and un-
and bi-LSTM correspond to linear transformation, feedforward layer
using tanh, hierarchical softmax [13], and uni- and bi-directional
LSTM layers. GMM is Gaussian mixture model. Scaling layer in
GAN scales each dimension of input features.

3. EXPERIMENTS

3.1. Corpus and features

This work used a Japanese speech corpus [24] of neutral reading
speech uttered by a female speaker. The duration is 50 hours, and
the number of utterance is 30,016, out of which 500 were randomly
selected as a validation set and another 500 were used as a test set.
Linguistic features were extracted by using OpenJTalk [25]. The
dimension of these features vectors was 389. Acoustic features
were extracted at a frame rate of 200 Hz (5 ms) from the 48 kHz
waveforms. MGC and BAP were extracted by using WORLD. The
dimensions for MGC were 60 and those for BAP were 25. The F0
was extracted by an assembly of multiple pitch trackers and then
quantized into 255 levels for quantized F0 modeling [13].

3.2. Neural network configuration

The network structures of the acoustic models are plotted in Fig. 2.
In DAR, RNN and SAR, the size of feedforward (FF), bi- and uni-
directional LSTM layer was 512, 256, and 128. The size of the linear
layer depended on the output features’ dimensions. For SAR, the
output layer included a Gaussian distribution for MGC with the AR
parameter K = 1 and another Gaussian for BAP with K = 0. In
GAN, all the CNN layers had 256 output channels and conducted
1D convolution. Each FF layer in the GAN generator changed
the dimension of a CNN’s output before skip-add operation. To
reduce instability in low-dimensional MGCs, the input MGC to the
discriminator was scaled element-wisely. The scaling weight was
0.001 for the first five MGC dimensions, 0.01 for the next five
dimensions, and 1 for the rest. The weight was 0 for BAP.

The Wavenet vocoder works at a sampling rate of 16kHz.
The µ-law companded waveform is quantized into 10 bits per
sample. Similar to the literature [9], the network consists of a
linear projection input layer, 40 blocks for dilated convolution, and a
post-processing block. The k-th dilation block has a dilation size
of 2mod(k,10), where mod(·) is modulo operation. The acoustic
features, which are fed to every dilated convolution block, contains
MGC and quantized F0. Natural acoustic features are used for
training while generated MGC and F0 are used during generation.

All the acoustic models and Wavenet are implemented on a
modified CURRENNT toolkit [26]. This toolkit and training recipes
can be found online (http://tonywangx.github.io).
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Fig. 3: Results in MOS scale. AbS-Pm and AbS-Wo correspond to
vocoded speech by using PML and WORLD vocoders. Error bars
represent two-tailed Student 95% confidence intervals.

3.3. Evaluation environment

The seven speech synthesis methods in Fig.1 were evaluated in terms
of speech quality and speaker similarity. Natural and vocoded speech
from WORLD and PML were also included in the evaluation. All
the systems except for the Wavenet-based SAR-Wa were rated at
sampling rates of 48 and 16 kHz. The speech samples of these
systems were natural or generated at 48 kHz, and the 16 kHz samples
were down-sampled from these 48 kHz samples. SAR-WA only
generated samples of 16 kHz. All samples were normalized to -26
dBov, and a total of 19 groups of speech samples were evaluated.

The evaluation was crowdsourced online. Each evaluation set
had 19 screens, i.e., one for each system. The order of systems
in each set was randomly shuffled. The evaluators must answer
two questions on each screen. First, they listened to a sample of
the system under evaluation and rated the naturalness on a 1-to-5
MOS scale. They then rated the similarity of that test sample to
the natural 48 kHz sample on a 1-to-5 MOS scale. The participants
were allowed to replay the samples. The samples in one set were
synthesized for the same text randomly selected from the test set.

3.4. Results and discussion

We collected a total of 1500 evaluation sets, i.e., 1500 scores for each
system. A total of 235 native Japanese listeners participated, with an
average of 6.4 sets per person. The statistical analysis was based on
unpaired t-tests with a 95% confidence margin and Holm-Bonferroni
compensation. The results are plotted in Fig. 3.

On acoustic modeling, the comparisons of the speech quality
score among RNN-Wo, RGA-Wo, SAR-Wo, and SGA-Wo indicated
that SAR (3.03) > SGA (2.82) ∼ RGA (2.81) > RNN (2.53) for
both 48 kHz and 16 kHz. The same ordering can be seen in terms of
speaker similarity. RNN’s unsatisfactory performance may be due
to the over-smoothing effect on the generated MGC, which muffled
the synthetic speech. This effect is indicated by the global variance
(GV) plotted in Fig. 5, where the GV of the generated MGC from
RNN was smaller than that of the other models. The performance of
SAR is consistent with that in our previous work [8], which indicated
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that the AR model alleviated the over-smoothing effect. The GAN-
based postfilter in both SGA and RGA also reduced the impact
of over-smoothing. Further, GAN not only enhanced GV but also
compensated for the modulation spectrum (MS) of the generated
MGC throughout the whole frequency band, which can be seen from
Fig. 6. However, neither SGA nor RGA outperformed SAR even
though SAR did not boost the MS in the high frequency bands. After
listening to the samples, we found that, while the samples of SGA
and RGA had better spectrum details, they contained more artifacts.
This indicated that generators in SGA and RGA may not optimally
learn the distribution of natural MGC. Future work will look into
details on SGA and RGA.

On waveform generation methods, the comparison among
SAR-Wa, SAR-Pr, SAR-Pm, SAR-Wo, and vocoded speech
showed that SAR-Wa significantly outperformed other waveform
generation methods in terms of speech quality. More interestingly,
SAR-Wa’s quality was even judged to be better than other synthetic
methods by using a 48 kHz sampling rate. The quality of SAR-Wa

was also close to the 16 kHz vocoded samples from Abs-Pm and
Abs-Wo. A closes inspection of the samples showed that the
Wavenet vocoder in SAR-Wa had fewer artifacts, such as amplitude
modulation in the waveform and other effects possibly due to
conventional vocoders. However, the gap between SAR-Wa and
Abs-Wo/Abs-Pm was still large in terms of speaker similarity.
One reason may be that, while the Wavenet vocoder trained
by using natural acoustic features may well learn the mapping
from acoustic features to waveforms, during waveform generation
it cannot compensate for the degradation of generated acoustic
features caused by the imperfect acoustic model SAR. Note that this
problem may not be resolved by training the Wavenet vocoder using
generated acoustic features if the acoustic model is not good enough.

Among other waveform generation methods, the PML vocoder,
while being similar to WORLD for analysis-by-synthesis, it lagged
behind when using the generated acoustic features. This result
is somewhat different from that in [11], and future work will
investigate the reasons for this. Comparison between SAR-Pr and
SAR-Wo indicated that the phase recovery method did not improve
the quality or similarity score. We suspect that this is because the
iterative process in the Griffin-Lim algorithm may introduce some
artifacts that degraded speech quality.

4. CONCLUSION

This work was our initial step in building a framework in which
recent acoustic modeling and waveform generation methods could
be compared on a common ground by using a large-scale perceptual
evaluation. This work only considered a few methods that could
easily be plugged into the common TTS pipeline. On acoustic
models, the results showed that the autoregressive model SAR
could achieve a better performance than a normal RNN. This
SAR was also easier to train than a GAN-based model. On
waveform generation methods, this work demonstrated the potential
of the Wavenet vocoder and the advantage of statistical waveform
modeling compared with conventional deterministic approaches.

We intend to investigate the reasons for the experiments’ results
in more detail in future work. Meanwhile, we recently validated that
SAR is a simple case of using normalizing flow [27] to transform the
density of target data. We will try to improve SAR and the overall
performance of speech synthesis system. Complex-valued models
that support the modeling of waveform phases may also be included.

4807



5. REFERENCES

[1] Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, Yonghui
Wu, Ron J. Weiss, Navdeep Jaitly, Zongheng Yang, Ying
Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis
Agiomyrgiannakis, Rob Clark, and Rif A. Saurous, “Tacotron:
Towards end-to-end speech synthesis,” in Proc. Interspeech,
2017, pp. 4006–4010.

[2] Jose Sotelo, Soroush Mehri, Kundan Kumar, João Felipe
Santos, Kyle Kastner, Aaron Courville, and Yoshua Bengio,
“Char2wav: End-to-end speech synthesis,” in Proc. ICLR
(Workshop Track), 2017.

[3] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[4] Felipe Espic, Cassia Valentini Botinhao, and Simon King,
“Direct modelling of magnitude and phase spectra for
statistical parametric speech synthesis,” in Proc. Interspeech,
2017, pp. 1383–1387.

[5] Shinji Takaki, Hirokazu Kameoka, and Junichi Yamagishi,
“Direct modeling of frequency spectra and waveform
generation based on phase recovery for DNN-based speech
synthesis,” in Proc. Interspeech, 2017, pp. 1128–1132.

[6] Srikanth Ronanki, Oliver Watts, and Simon King, “A
hierarchical encoder-decoder model for statistical parametric
speech synthesis,” in Proc. Interspeech, 2017, pp. 1133–1137.

[7] Takuhiro Kaneko, Hirokazu Kameoka, Nobukatsu Hojo,
Yusuke Ijima, Kaoru Hiramatsu, and Kunio Kashino,
“Generative adversarial network-based postfilter for statistical
parametric speech synthesis,” in Proc. ICASSP, 2017, pp.
4910–4914.

[8] Xin Wang, Shinji
Takaki, and Junichi Yamagishi, “An autoregressive recurrent
mixture density network for parametric speech synthesis,” in
Proc. ICASSP, 2017, pp. 4895–4899.

[9] Akira Tamamori, Tomoki Hayashi, Kazuhiro Kobayashi,
Kazuya Takeda, and Tomoki Toda, “Speaker-dependent
WaveNet vocoder,” in Proc. Interspeech, 2017, pp. 1118–1122.

[10] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa,
“WORLD: A vocoder-based high-quality speech synthesis
system for real-time applications,” IEICE Trans. on
Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

[11] Gilles Degottex, Pierre Lanchantin, and Mark Gales, “A
log domain pulse model for parametric speech synthesis,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2017.

[12] Daniel Griffin and Jae Lim, “Signal estimation from modified
short-time Fourier transform,” IEEE Trans. ASSP, vol. 32, no.
2, pp. 236–243, 1984.

[13] Xin Wang, Shinji Takaki, and Junichi Yamagishi, “An RNN-
based quantized F0 model with multi-tier feedback links for
text-to-speech synthesis,” in Proc. Interspeech, 2017, pp.
1059–1063.

[14] Tokuda Keiichi, Yoshimura Takayoshi, Masuko Takashi,
Kobayashi Takao, and Kitamura Tadashi, “Speech parameter
generation algorithms for HMM-based speech synthesis,” in
Proc. ICASSP, 2000, pp. 936–939.

[15] Ranniery Maia, Masami Akamine, and Mark J.F. Gales,
“Complex cepstrum as phase information in statistical
parametric speech synthesis,” in Proc. ICASSP, 2012, pp.
4581–4584.

[16] Gilles Degottex and Daniel Erro, “A uniform phase
representation for the harmonic model in speech synthesis
applications,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2014, no. 1, pp. 38, Oct 2014.

[17] Qiong Hu, Junichi Yamagishi, Korin Richmond, Katrick
Subramanian, and Yannis Stylianou, “Initial investigation of
speech synthesis based on complex-valued neural networks,”
in Proc. ICASSP, March 2016, pp. 5630–5634.

[18] Toru Nakashika, Shinji Takaki, and Junichi Yamagishi,
“Complex-valued restricted Boltzmann machine for direct
learning of frequency spectra,” in Proc. Interspeech, 2017, pp.
4021–4025.

[19] Hideki
Kawahara, Ikuyo Masuda-Katsuse, and Alain de Cheveigne,
“Restructuring speech representations using a pitch-adaptive
time-frequency smoothing and an instantaneous-frequency-
based F0 extraction: Possible role of a repetitive structure in
sounds,” Speech Communication, vol. 27, pp. 187–207, 1999.

[20] Takuhiro Kaneko, Shinji Takaki, Hirokazu Kameoka, and
Junichi Yamagishi, “Generative adversarial network-based
postfilter for STFT spectrograms,” in Proc. Interspeech, 2017,
pp. 3389–3393.

[21] Yajun Hu, Chuang Ding, Li Juan Liu, Zhen Hua Ling, and
Li Rong Dai, “The USTC system for Blizzard Challenge
2017,” in Proc. Blizzard Challenge Workshop, 2017.

[22] Boualem Boashash, “Estimating and interpreting the
instantaneous frequency of a signal. ii. algorithms and
applications,” Proceedings of the IEEE, vol. 80, no. 4, pp.
540–568, 1992.

[23] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman,
Mohammad Norouzi, Douglas Eck, and Karen Simonyan,
“Neural audio synthesis of musical notes with WaveNet
autoencoders,” in Proc. ICML, 2017, pp. 1068–1077.

[24] Hisashi Kawai, Tomoki Toda, Jinfu Ni, Minoru Tsuzaki, and
Keiichi Tokuda, “XIMERA: A new TTS from ATR based on
corpus-based technologies,” in Proc. SSW5, 2004, pp. 179–
184.

[25] The HTS Working Group, “The Japanese TTS System ‘Open
JTalk’,” 2015.

[26] Felix Weninger, Johannes Bergmann, and Björn Schuller,
“Introducing CURRENT: The Munich open-source CUDA
recurrent neural network toolkit,” The Journal of Machine
Learning Research, vol. 16, no. 1, pp. 547–551, 2015.

[27] Danilo Rezende and Shakir Mohamed, “Variational inference
with normalizing flows,” in Proc. ICML, 2015, pp. 1530–1538.

4808


