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ABSTRACT
We describe a new application of deep-learning-based speech syn-
thesis, namely multilingual speech synthesis for generating control-
lable foreign accent. Specifically, we train a DBLSTM-based acous-
tic model on non-accented multilingual speech recordings from a
speaker native in several languages. By copying durations and pitch
contours from a pre-recorded utterance of the desired prompt, nat-
ural prosody is achieved. We call this paradigm “cyborg speech”
as it combines human and machine speech parameters. Segment-
ally accented speech is produced by interpolating specific quin-
phone linguistic features towards phones from the other language
that represent non-native mispronunciations. Experiments on syn-
thetic American-English-accented Japanese speech show that sub-
jective synthesis quality matches monolingual synthesis, that natural
pitch is maintained, and that naturalistic phone substitutions gener-
ate output that is perceived as having an American foreign accent,
even though only non-accented training data was used.

Index Terms— Multilingual speech synthesis, phonetic manip-
ulation, foreign accent, DNN

1. INTRODUCTION

Not all speech synthesis systems are created with the primary goal
of facilitating the interaction between man and machine – the abil-
ity for a computer to mimic human speech also opens a window
into human perception of speech. This paper describes how modern
deep-learning-based speech synthesis can provide new tools for per-
ception research. Specifically, we demonstrate a novel application
of neural-network-based speech synthesis, which is to synthesise
foreign-accented speech from unaccented speech recordings alone.

The synthesis approach we describe allows phonetic output con-
trol at the segmental level while recreating the prosody of natural
speech recordings. This is particularly appealing for “microscope
studies” of speech perception which explore the effect of carefully-
defined phonetic alterations that are well resolved in time and de-
gree. The speech stimuli we generate embody pronunciation manip-
ulations that are difficult to elicit from human speakers, and com-
plement more labour-intensive stimulus-creation tools from speech
perception such as splicing or manipulating recorded speech signals
in a parametric/vocoder representation.

Compared to existing speech synthesisers, especially in percep-
tion and foreign-accent research as described in Sec. 2, our main
achievements are:

1. Using deep learning to generate high-quality speech with
controllable, segment-level foreign accent, despite using only
native multilingual speech recordings as input.

This work was partially supported by MEXT KAKENHI Grant Numbers
(15H02729, 17K12720).

2. Replicating prosodically-relevant speech properties (pitch
and phone durations) as extracted from natural speech re-
cordings, thus circumventing any concerns over the some-
times inadequate prosody of conventional text-to-speech.

Our approach – detailed in Sec. 3 – is applicable to any number of
languages in combination (assuming appropriate multilingual data is
available) and a multitude of different phonetic manipulations. We
show in objective and subjective experiments (Sec. 4) that our pro-
posal follows the pitch contour of the natural speech and generates
noticeably and characteristically accented speech while matching the
segmental quality of a monolingual baseline synthesiser.

2. BACKGROUND

2.1. Foreign-Accent Research

By comparing listeners’ reactions to speech designed to differ in spe-
cific aspects, researchers can shed light on how humans perceive
speech. This methodology can be used to study the phonemic and
perceptual basis of foreign accent (FA), and to disentangle the in-
dividual cues that underpin it. Historically, most FA research has
focused on supra-segmental accent properties, including intonation
and pauses [1], nuclear stress [2], duration [3], and speech rate [4].
Interestingly, however, [5] instead highlighted segmental errors as
the phonetic cues most strongly responsible for conveying FA.

Unfortunately, it is not straightforward to create speech stim-
uli that isolate the effect of different segmental mispronunciations
on accentedness. Even professional voice talents find it difficult to
produce speech with isolated nonnative mispronunciations, not to
mention speaking in intermediate degrees of accent. Cross-language
splicing is labour-intensive and prone to artefacts at the joins. Con-
sequently, [6] introduced the idea of stimulus generation through
multilingual speech synthesis. Our work can be seen as an evolu-
tion of that idea, but using deep learning to generate foreign accent.

2.2. DNNs and Speech Synthesis for Perception Research

When creating synthetic speech stimuli for perception research, high
segmental quality is a priority: research suggests that human per-
ception processes differ between natural and (formant) synthesised
speech due to a dearth of natural acoustic cues in the synthetic au-
dio [7, 8]. While formant synthesis controlled by rules [9, 10] is the
classic synthesis paradigm in perception research, a handful of recent
studies (e.g., [11, 6]) have considered hidden Markov model (HMM)
text-to-speech (TTS) coupled with decision-tree acoustic models for
controllable speech synthesis with speech perception applications.
Synthesis based on deep recurrent neural networks (RNNs) [12, 13]
improve on the segmental quality of decision trees [14, 15] through
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statistical learning methods that better replicate the acoustic proper-
ties (and cues) in natural speech recordings.

Another important advantage of deep learning is that it also
provides great flexibility for controlling the output speech signal,
e.g., to vary speaker identity [16], expression [17], or emotion [18].
A single deep neural network acoustic model can even be trained
to perform multilingual TTS [19], though that requires redesigning
the architecture of the synthesiser. This paper similarly describes
a new RNN synthesiser architecture capable of multilingual speech
synthesis with segmental control of foreign accent, while maintain-
ing the prosodic characteristics of natural speech. In particular, we
propose to extract durations and pitch contours from native, natural
speech recordings, and use these as inputs rather than outputs in a
deep LSTM-based acoustic model. Absent such recordings, one can
always predict durations and pitch from text using dedicated, high-
accuracy methods like [20].

3. METHOD

We will now describe how to practically realise our goal of cre-
ating a multilingual speech synthesiser with phonetic control and
given prosodic characteristics. Our plan is to re-use the durations
(phone timings) and the pitch contour (fundamental frequency F0
and voiced/unvoiced decision) of natural, native speech productions
of the text prompt to be generated. This requires that such recordings
are available prior to synthesis, either by only synthesising held-out
prompts from the training data, or by custom-recording natural pro-
ductions of the prompts to be synthesised. Alternatively, durations
and F0 can be predicted externally, e.g., through conventional TTS
methods, but the prosody will then be defined by a machine.

Since our speech durations are given, no duration model is
needed. Our task is instead like acoustic modelling (predicting
frame-wise inputs to a vocoder) in conventional TTS, except that
pitch values also are provided. The vocoder parameters that remain
to be predicted are source aperiodicities and filter spectra, which
capture speech phonation quality and articulation; our approach is
to learn to predict these with an RNN. Unusually, the system that
results from this setup is neither text-to-speech nor speech-to-speech
(voice conversion), but requires both text and speech input to gener-
ate audio. As the resulting speech output is a chimeric combination
(cf. [21]) of man and machine – natural and predicted speech para-
meters – we dub this paradigm cyborg speech.

3.1. Data

For this study, we had access to high-quality studio recordings of
a male professional voice talent speaking both US English and Ja-
panese natively. The recordings comprised 2000 utterances in each
language (3 h 29 min of Japanese and 4 h 15 min minutes of Eng-
lish) plus a separate set of 20 test utterances in each language. All
audio recordings were downsampled to 48 kHz at 16 bits per sample,
normalised to -6 dB below clipping, and limited to a single channel.

Acoustic analysis and synthesis were performed using WORLD
[22] with 5 ms frame step. However, due to frequent voicing er-
rors in the WORLD F0 extraction, particularly in Japanese devoiced
vowels, we used pitch contours from the GlottDNN pitch extractor in
[23] instead. This substantially improved analysis-synthesis quality.
The obtained WORLD spectra and aperiodicities were subsequently
reduced to 60 mel-generalised cepstrum coefficients (MGCs) and 25
band aperiodicities (BAPs) plus their ∆ and ∆2 coefficients.

To associate each audio frame with a phone, we performed
forced alignment using two monolingual synthesisers based on HTS
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Fig. 1. Cyborg speech synthesis system. Ovals are data, rectangles
are processes. Audio is tinted blue, text red, and both together pink.

[24], one for each language. English text processing was performed
using Flite [25] with the Combilex [26] General American (GAM)
phonetic dictionary (54 metaphonemes), while the Japanese text
used Open JTalk [27] with a standard phone set (44 phones).

3.2. Acoustic Model Inputs

Typical TTS front-ends extract a diverse set of features from the text.
This includes phonetic context (quinphones) and a variety of other
additional, typically language-dependent, features. While the use of
phonetic context is widespread across the most popular front-ends,
other linguistic features vary substantially across languages and sys-
tems, making them hard to reconcile in a multilingual application.
However, since these additional features primarily are used for im-
proving the prediction of prosody, they are not necessary for our ap-
plication; hence we ignored any such extra front-end features, keep-
ing only five-hot quinphone context as our only text-derived RNN
input, as phones are necessary for enabling phonetic control.

To obtain multilingual quinphones, we took the union of the
phone sets in all languages considered, treating duplicate symbols
across languages as distinct phones. This gave a total of 98 phones
for our bilingual system. In practise, our scheme is implemented by
zero-padding conventional five-hot monolingual quinphone vectors
features to reach the dimensionality of the target multilingual quin-
phone feature vector. A more advanced setup could encode multi-
lingual phones based on IPA and articulatory features. This would
open the door to even more discriminate pronunciation control.

Aside from the quinphone features, we added a binary language
flag indicating the language of the current frame. This flag can be
generalised to a one-hot vector in applications with more than two
languages. While the language flag in our case is redundant given
that our multilingual identities already encode language information,
that would not necessarily be the case if an articulatory or IPA-based
phonetic input representation was used. Regardless of encoding, it is
straightforward to interpolate between the input feature values rep-
resenting different phones and languages, enabling speech output
with intermediate phonetics or articulation, in mixed languages.

Since we have access to reference durations and F0 values, it
makes sense to provide these as inputs to the acoustic model, espe-
cially since this benefits subjective output quality [14]. Following
[15], we used three duration-dependent features as input for each
frame. For pitch input, we used the voicing flag and (interpolated)
log F0 and its ∆ and ∆2 features as frame inputs, which enables us
to learn and replicate dependencies between voicing frequency and
the acoustic features of the speech. A schematic overview of the
complete system and its training is provided in Fig. 1.

3.3. RNN Training and Synthesis

With the above setup, one obtains an acoustic modelling problem
where each frame has output dimensionality 255 (static and dynamic
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Japanese English Substitutions made
IPA Open JTalk IPA Combilex GAM Max No. prompts

R r ô r 9 19
C sh S S 8 13

dz z z z 5 7
dý j dZ dZ 3 8
tC ch tS tS 2 11

Table 1. Cross-language phone substitutions to emulate American-
accented Japanese. The last two columns count the number of sub-
stitutions made in the most affected prompt, and the number of test
prompts with at least one substitution.

MGCs and BAPs, but no F0) and input dimensionality 228 (Japan-
ese), 278 (English), or 498 (bilingual). We used a DBLSTM with the
same design and dimensions as in [28] to learn a mapping from in-
put sequences to output sequences. Network weights were initialised
with small random values and then trained using CURRENNT [29]
to minimise mean-squared error (MSE). Approximately five percent
of the training-data utterances were randomly held out for valida-
tion, while the 20 designated test sentences were kept aside for final
evaluation. All input and output features except the binary language
flag were normalised to zero mean and unit variance.

Optimisation proceeded using minibatch stochastic gradient
descent (SGD) in two stages: first, raw SGD with learning rate
2.5×10−6 and no momentum was applied for 160 epochs; then Ad-
aGrad [30] with learning rate 0.001 was applied to the previously ob-
tained network. Both stages used early stopping, though this really
only affected the AdaGrad stage, where it always terminated training
within 30 epochs. The model with the best validation-set perform-
ance across all of training was used for the experiments.

Three different systems were trained: one on the Japanese data,
one on the English data, and one on the bilingual data over the joint
phone set. The final validation-set performance (frame MSE) was
83.51 on the Japanese data, 85.74 on the English data, and 84.87 on
the combined data, falling between the two monolingual systems.

Predicted static and dynamic parameter sequences were recon-
ciled using MLPG [31] and then fed into WORLD to generate syn-
thetic speech stimuli for the test set utterances. Standard postfiltering
was applied to enhance the clarity of the speech.

4. EXPERIMENTS

To verify the abilities of our approach to generate native and foreign-
accented speech with maintained prosody, we evaluated several as-
pects of our trained multilingual synthesiser. While our approach is
able to speak in, and mix accents from, any language provided as
training data, we concentrated on Japanese stimuli, since we only
had easy access to native Japanese listeners for the subjective eval-
uation. We contrasted performance against the trained monolingual
Japanese system, not the English monolingual system, due to the
absence of appropriate listeners.

4.1. Stimulus Generation

Our test material comprised 20 natural Japanese-language utterances
between 7.4 and 10.8 seconds in duration. Their durations, pitch
contours, and corresponding text prompts were used as inputs to the
Japanese monolingual (denoted “MON”) and bilingual synthesiser
(denoted “BIL”) to generate 20 synthetic speech stimuli for each
system. We also compared against the 20 natural recordings from
the test set (denoted “NAT”) and analysis-synthesis stimuli (denoted
“VOC”) obtained from the extracted F0, MGC, and BAP features.

Among the four stimulus generators considered, only BIL is
capable of interpolating between languages as necessary for generat-
ing foreign accent. We decided to investigate this novel feature in a
simple application to creating American English-accented Japanese
speech stimuli. Specifically, we considered five distinct consonant
substitutions inspired by common mispronunciations among native
speakers of American English (L1) speaking Japanese as a foreign
language (L2). All of these mispronunciations can be emulated by
simply replacing specific Japanese phones in the test prompt phon-
etisations by a corresponding phone in the Combilex General Amer-
ican phone set, without changing pitch or duration. The chosen sub-
stitutions and their prevalence are described in Tab. 1.

The manipulations in Tab. 1 represent five different directions in
which Japanese speech can be altered to simulate an American ac-
cent. We also created stimuli combining all substitutions simultan-
eously, a manipulation labelled “all”. Two degrees of interpolation
were considered for each manipulation: either completely replacing
all quinphone references to the substituted phone by a phone from
the other language (degree 1.0), or half-way interpolation by aver-
aging the original and substituted input vectors (degree 0.5). The
language flag was similarly altered on frames where the centre phone
came from the English phone set. This produced a total of twelve
synthetically accented stimuli for each of the 20 test-set prompts.

We use the term condition to refer to the combination of system
(NAT, VOC, MON, BIL), manipulation (none, r, sh, z, j, ch, all), and
degree of interpolation (0.0, 0.5, 1.0). Each of the 16 conditions con-
sidered is associated with one stimulus (waveform) per text prompt,
for a total of 320 stimuli included in the evaluation.

4.2. Pitch Reproduction Experiment

Even though we used durations and pitch contours directly estimated
from natural speech recordings, this is no guarantee that these pros-
odic features are faithfully reproduced by the vocoder. To check this,
we re-ran the GlottDNN pitch extractor on the WORLD-synthesised
speech files, giving a new pitch contour for each stimulus. If pitch
is accurately maintained by the synthesiser, these should be sim-
ilar to the pitch contours extracted from NAT. Heading (a) of Tab. 2
quantifies the mean per-prompt Pearson correlation between mutu-
ally voiced frames of ln F0 contours from NAT and from other con-
figurations. The correlations are much higher than F0 correlations
seen in pure TTS, e.g., [20].

4.3. Subjective Quality Evaluation

Next, we estimated the subjective segmental quality of speech
generated by the different systems through a web-based listen-
ing test. We used native Japanese listeners crowdsourced through
CrowdWorksLTD to gather assessments of all stimuli on the classic
opinion score Likert scale from 1 (Bad) through 5 (Excellent). Stim-
uli were presented to listeners for assessment in a randomised but
balanced design, such that each set of 16 stimuli that a listener heard
contained one example from each condition, and that each distinct
stimulus would be rated 30 times throughout the course of the evalu-
ation. Listeners were remunerated for each complete set of 16 stim-
uli they rated, and were limited to rating at most six utterance sets.

After excluding a single listener who reported not being able
to properly perform the task, 599 subjective ratings remained for
each condition, provided by a total of 131 participating individuals.
The results of the evaluation of subjective quality are reported under
heading (b) of Tab. 2, in the form of mean opinion score (MOS)
for each condition and two-tailed 95% confidence intervals (rounded
outwards) for these means, based on a Gaussian approximation.
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(a) Mean log-F0 correlation (b) Quality MOS (c) Mean strength of foreign accent
System Manipulation Deg. 0.0 Deg. 0.5 Deg. 1.0 Deg. 0.0 Deg. 0.5 Deg. 1.0 Deg. 0.0 Deg. 0.5 Deg. 1.0

NAT none 1 - - 4.43±0.031 - - 1.60±0.046 - -
VOC none 0.990 - - 3.71±0.040 - - 1.73±0.050 - -
MON none 0.986 - - 3.34±0.035 - - 2.42±0.064 - -
BIL none 0.965 - - 3.33±0.035 - - 2.39±0.063 - -
BIL r ” 0.967 0.961 ” 3.27±0.035 3.07±0.036 ” 2.55±0.062 3.38±0.071
BIL sh ” 0.963 0.965 ” 3.30±0.035 3.27±0.035 ” 2.42±0.063 2.53±0.064
BIL z ” 0.962 0.965 ” 3.30±0.035 3.31±0.035 ” 2.38±0.062 2.42±0.064
BIL j ” 0.976 0.965 ” 3.33±0.035 3.31±0.036 ” 2.41±0.064 2.48±0.064
BIL ch ” 0.965 0.965 ” 3.29±0.035 3.28±0.035 ” 2.45±0.064 2.45±0.062
BIL all ” 0.961 0.965 ” 3.23±0.035 3.01±0.037 ” 2.66±0.065 3.55±0.071

Table 2. Results of numerical evaluations of pitch contour reproduction and of subjective quality and strength of foreign accent. “Deg.”
denotes the degree of interpolation within a column. Hyphens indicate cells whose values are undefined, while quotation marks indicate
configurations not evaluated explicitly, but whose performance is theoretically equivalent to the last numerical value above them.

Looking at Tab. 2, we note that the natural recordings are as
high-quality, but that analysis-synthesis (VOC) shows notable de-
gradation (0.72 points on the five-point scale). Compared to VOC,
the further drop in rating introduced by the two synthesisers MON
and BIL without manipulation is smaller (at most 0.38 points). Most
importantly, however, the difference in rated quality (MOS) between
MON and BIL is only 0.01 points. We can conclude that our
approach is not far from the segmental-quality of stimuli created
through vocoder-domain signal modification, and that there effect-
ively is no quality penalty for building a system capable of multilin-
gual speech synthesis and foreign accent generation, compared to a
monolingual one. Holm-Bonferroni corrected Student’s t-tests show
that the differences in quality of (NAT, VOC) and (VOC, MON) are
statistically significant at the 0.05 level, whereas (MON, BIL) is not.

For manipulated conditions (BIL), the subjective quality ratings
tend to lie somewhat below BIL with no manipulation. Most of the
time, the difference is insignificant, but for the manipulations r and
all at full interpolation the drop is 0.25 and 0.31 MOS points, re-
spectively. This might either reflect an actual decrease in segmental
signal quality, or it could be that listeners (partially or fully) are
unable to perceptually separate their judgment of accent from that
of segmental quality, meaning that accented speech may be more
likely to be rated as having intrinsically lower quality due to the ac-
cent alone. The latter would be consistent with findings that foreign
accent can affect attitudes and value judgements towards a speaker
[32]. An evaluation with English speech and listeners comparing
BIL monolingual system could assess the quality of the English as-
pect of BIL, but would still not be able to disentangle the effects of
foreign accent and segmental quality during interpolation.

4.4. Foreign-Accent Evaluation

Each time a test stimulus was presented, the listener was also instruc-
ted to indicate the strength of foreign accent, scored on a seven-point
Likert scale from 1 (native-like) to 7 (very strong), as in [6]. As that
study only investigated short, isolated words with consonant substi-
tutions (whereas we tested entire sentences with few, sometimes no
substitutions), and they did not keep the prosody across languages,
we expect our manipulations to produce less extreme effects on per-
ceived accent than they observed. In return for using longer stimuli,
we were able to collect reliable quality ratings in Sec. 4.3.

Per-condition average ratings of the strength of foreign accent,
together with confidence intervals like before, are reported under
heading (c) of Tab. 2. It is obvious that speech with the most per-
vasive phonetic substitutions r and sh (Deg. 1.0) was perceived as
substantially more accented than BIL without interpolation. In par-
ticular, manipulations involving the r-phoneme (r and all) provoked
highly significant differences of 0.99 or more on the seven-point
scale, despite the limited fraction of phone tokens that were mod-

Condition Perceived foreign accent (% of responses)

System Manip. Deg. None C
H

I

K
O

R

A
U

S

ID
N

U
SA

Unk.
NAT none 0.0 77 3 2 1 1 5 12
VOC none 0.0 72 3 2 1 1 8 13
MON none 0.0 50 8 4 2 1 9 27
BIL none 0.0 51 7 4 3 1 10 24
BIL r 1.0 23 9 3 5 3 29 28
BIL sh 1.0 44 10 5 3 1 10 27
BIL z 1.0 48 7 3 2 2 11 28
BIL j 1.0 47 9 5 2 1 11 26
BIL ch 1.0 45 10 4 2 1 12 26
BIL all 1.0 19 10 4 5 2 33 28

Table 3. Response distributions of perceived foreign accent. The
percentages in each row may not sum to exactly 100 due to rounding.

ified. The intermediate degree of interpolation produced smaller rat-
ing differences. The fact that some manipulations were perceived as
noticeably more accented than others echoes the findings in [6].

In addition to the strength of foreign accent, we also prompted
listeners to indicate the language of the foreign accent of each stimu-
lus presented, choosing between “No accent”, “Chinese”, “Korean”,
“Australian”, “Indonesian”, “American”, and “Don’t know”; this list
was based on the most populous groups of non-citizens residing in
Japan. A breakdown of the resulting responses for a subset of con-
ditions is presented in Tab. 3. The table data supports the following
observations and conclusions: i) The recorded Japanese speech is
not foreign-accented (77% “no accent” responses). ii) The effects of
vocoding (VOC) and especially RNN-based prediction (MON and
BIL) interfere with human accent classification (51% or less “no ac-
cent”; 24% or greater “unknown” responses). iii) On every row,
“American” was the most commonly perceived specific accent. iv)
Speech with manipulated ‘r’s was obviously identifiable as an Amer-
ican foreign accent. (“American” was the most common response to
the manipulations r and all, with “no accent” at 23% or less.)

5. CONCLUSION

We have described a new application of deep-learning-based speech
synthesis to create speech stimuli with controllable foreign accent
only using native (non-accented) multilingual speech recordings.
Using a novel system architecture, we are able to mimic the prosody
of natural speech and achieve a signal quality not far below that of
vocoded audio. Empirical tests confirm the efficacy of the approach.

Our next step is to apply our method to perform research on
segmental foreign accent. This includes a more varied regimen of
objective and subjective tests, together with extensions to other lan-
guages and manipulations. Compelling refinements of the method
include more meaningful encodings of the phonetic inputs, e.g.,
place of articulation, and considering multispeaker data.
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