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ABSTRACT

The Bidirectional LSTM (BLSTM) RNN based speech syn-
thesis system is among the best parametric Text-to-Speech
(TTS) systems in terms of the naturalness of generated
speech, especially the naturalness in prosody. However,
the model complexity and inference cost of BLSTM prevents
its usage in many runtime applications. Meanwhile, Deep
Feed-forward Sequential Memory Networks (DFSMN) has
shown its consistent out-performance over BLSTM in both
word error rate (WER) and the runtime computation cost in
speech recognition tasks. Since speech synthesis also re-
quires to model long-term dependencies compared to speech
recognition, in this paper, we investigate the Deep-FSMN
(DFSMN) in speech synthesis. Both objective and subjective
experiments show that, compared with BLSTM TTS method,
the DFSMN system can generate synthesized speech with
comparable speech quality while drastically reduce model
complexity and speech generation time.

Index Terms— FSMN, Deep-FSMN, parametric speech
synthesis, Text-to-Speech

1. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have be-
came dominant in the parametric speech synthesis back-end
modeling[1, 2]. Compared with conventional HMM-GMM
methods training at state level, neural network based methods
model and predict at much smaller step, e.g. frame or even
sample level[2, 3, 4]. Recurrent Neural Networks (RNNs)
have shown their advantage in modeling long-term depen-
dencies in sequential data due to their recurrent connections
over time [5]. And amongst all variants of recurrent neural
networks, Long Short-Term Memory (LSTM) and Bidirec-
tional LSTM (BLSTM)[6], alleviate the gradient vanishing
problem with back-propagation through time (BPTT)[7, 8]
training in basic RNNs, which are consequently better to learn
very long-range dependencies between sequential samples.
With more attention paid, LSTM/BLSTM-RNN based acous-
tic sequence modeling has turned out to be a great success in
both speech recognition[9, 10] and speech synthesis[3].

Different to the basic fully-connected feed-forward neural
network (FNN) that maps a fixed input within a small context

window to a fixed output, DFSMN is able to capture infor-
mation in a very long context by using memory blocks with
look-back and look-ahead filters in a hierarchical structure.
More importantly, DFSMN preserves the feed-forward struc-
ture so that it can be learned in a more efficient and stable way
than BLSTM-RNN. In this paper, we propose to use DFSMN
as a back-end feature modeling component for speech syn-
thesis. We investigate the influences of the order and depth
in DFSMN to the final system performance. We also try to
answer the following two questions: i) Do we really need
to model long-term dependencies in speech synthesis acous-
tic modeling? ; ii) Dependency within how long time really
matters to synthesized speech quality?. For comparison, we
have trained a strong BLSTM-RNN based speech synthesis
system as our baseline system. Experimental results show
that DFSMN based system can achieve a comparable voice
naturalness to the baseline system while being much smaller
in model size and faster in generation speed. Neural net-
works with the tapped delay structure[11, 12] is another popu-
lar feed-forward architecture which can efficiently model the
long temporal contexts. The difference between these two
models are discussed in [13].

The rest of the paper is organized as follows. Details of
the proposed DFSMN based speech synthesis system, includ-
ing the framework, an overview of the compact feed-forward
sequential memory networks (cFSMN), and the Deep-FSMN
structure is introduced in section 2. Objective experiments
and subjective MOS evaluation results are described in Sec-
tion 3. Conclusion and discussion are given in section 4.

2. DFSMN BASED SPEECH SYNTHESIS SYSTEM

2.1. System Framework

The BLSTM based statistical parametric speech synthesis
system described in [3] is used here as a baseline system.
Similar to modern statistical parametric speech synthesis
systems, our DFSMN based statistical parametric speech
synthesis system is also composed of 3 major parts: the
Vocoder, the Front-end, and the Back-end. WORLD[14] is
employed in this work as the Vocoder to analysis raw speech
waveform into spectrum, log F0, and band-periodicity fea-
tures during training stage. And it is also used to synthesize
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generated acoustic parameters back to waveform at the syn-
thesis stage. The Front-end processes the input text with text
normalization and lexical analysis, then feeds the encoded
linguistic features as input to neural network training. The
Back-end in the neural networks based framework is quite
straightforward. It establishes mapping between the input
encoded linguistic features and the extracted acoustic fea-
tures with neural networks. During neural network training,
different acoustic features streams are learned simultaneously
with multi-task training. In this work, DFSMN models with
different order and depth are experimented and compared as
the Back-end, making a direct comparison with the BLSTM
based baseline.

2.2. Compact Feed-forward Sequential Memory Net-
works

Compact feed-forward sequential memory networks (cF-
SMN) is proposed in [15] as an improvement over standard
feed-forward sequential memory networks (FSMN) [16, 17]
by combining low-rank matrix factorization. As a variant,
cFSMN simplifies FSMN, reduces the number of parameters
and speeds up the learning procedure.

Fig. 1. Illustration of cFSMN

Figure 1 gives an illustration of compact feed-forward se-
quential memory networks (cFSMN). For each cFSMN layer,
a linear projection is first applied, the result is then used by the
memory block to form an element-wise weighted sum of the
history (and the future, if the network is bidirectional) of the
layer and finally, the sum is followed by an affine transform
and a non-linearity to yield the layer output.

In Equation 1, pl
t denotes the linear projection of the l-

th layer. The unidirectional and bidirectional memory blocks
are formulated as Equation 2 and Equation 3, respectively.
Eventually, the output of the cFSMN layer can be calculated
using Equation 4. In the equations, � denotes element-wise
vector multiplication.

pl
t = Vlhl

t + bl (1)

p̃l
t = pl

t +

N∑
i=0

ali � pl
t−i (2)

p̃l
t = pl

t +

N1∑
i=0

ali � pl
t−i +

N2∑
j=1

clj � pl
t+j (3)

hl+1
t = f

(
Ulp̃l

t + dl
)

(4)

Like RNNs, cFSMN is able to capture long-term infor-
mation of sequences by tuning the order of memory blocks.
Unlike RNNs, cFSMN can be efficiently trained using back-
propagation (BP), which is faster and more invulnerable
to gradient vanishing problem than doing back-propagation
through time (BPTT) with recurrent networks.

2.3. Deep-FSMN

Inspired by successful applications of very deep networks in
many different fields [18, 19, 20, 21, 22, 23], one potential im-
provement over cFSMN is to make the network deeper. We
give an overview of Deep-FSMN (DFSMN) [24] in this sec-
tion.

2.3.1. Skip-Connections

Skip-connections have been proved to be important for ex-
ploiting gain from training deep feed-forward neural networks
[19, 25]. To make cFSMN deeper, it is very interesting to
see the performance with the help of skip-connections. DF-
SMN can not only benefit from the increased representational
power of deep network, but may also taking advantage of
wider context (history and future) brought by depth indirectly.

For DFSMN, we add skip-connections between consec-
utive memory blocks p̃l−1

t and p̃l
t, so that while gradient

back-propagating the non-linearities can be bypassed. Equa-
tion 3 now becomes Equation 5 where H(p̃l−1

t ) denotes
simple identity mapping of the memory block from the l-1-th
layer since the memory blocks in DFSMN have the same size.

p̃l
t = H(p̃l−1

t )+pl
t+

N1∑
i=0

ali�pl
t−s1∗i+

N2∑
j=1

clj�pl
t+s2∗j (5)

2.3.2. Order of Memory Blocks

DFSMN is flexible in terms of context dependency. When se-
quences are short or latency is essential, the order of memory
blocks can be narrowed so that only near history and future
are considered by the network. However, when sequences
are long or latency is less important, the order of memory
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Fig. 2. Illustration of effects of order and stride for DFSMN, where in this case order = 2 and stride = 2

Table 1. Comparison of various DFSMN models in objective measures

ID Network #Layers Order Objective Measures Size
(MB)

FLOPS(G)
MCD F0 RMSE BAPD U/V Error MSE

BLSTM BLSTM - - 6.92 29.09 2.93 0.1008 0.0273 295 21.09
A DFSMN 3+2 1,1,1,1 7.43 33.41 3.09 0.1074 0.0311 62 4.08
B DFSMN 3+2 2,2,2,2 7.33 31.96 3.03 0.1046 0.0302 62 4.08
C DFSMN 3+2 5,5,2,2 7.23 30.73 3.00 0.1028 0.0294 62 4.08
D DFSMN 3+2 10,10,2,2 7.15 30.16 2.98 0.1019 0.0288 62 4.09
E DFSMN 6+2 10,10,2,2 7.11 29.91 2.97 0.1013 0.0285 87 5.35
F DFSMN 10+2 10,10,2,2 7.07 29.66 2.95 0.1007 0.0282 119 7.04
G DFSMN 10+2 20,20,2,2 6.99 29.30 2.94 0.1004 0.0277 119 7.06
H DFSMN 10+2 40,40,2,2 6.92 28.92 2.91 0.0999 0.0272 120 7.10
I DFSMN 10+2 80,80,2,2 6.87 28.72 2.89 0.0999 0.0269 122 7.18

blocks can be enlarged to fully utilize long-term dependen-
cies though in the trade of some efficiency.

Apart from order of memory blocks, we also add hyper-
parameter stride to skip some adjacent frames which in TTS
tasks are even more overlapped compared with ASR tasks.
On the other hand, by stacking DFSMN layers, the final out-
put is able to see longer history and future hierarchically.

In TTS tasks, long sequences are frequent to see. Conse-
quently, we perform exhaustive search of the order of memory
blocks and the depth of DFSMN to try to reach the perfor-
mance tip of this fantastic neural architecture.

3. EXPERIMENTS

3.1. Database
The corpus used in this work is a vocal novel database read by
a single Mandarin male speaker. The training set of the cor-
pus contains 38600 utterances (around 83 hours), and another
1400 utterances are left out as validation (around 3 hours).
The speech signal is sampled at 16kHz. WORLD is used to
extract the 60-dim mel-cepstral features, 3-dim log F0 (static,
delta and acceleration), and 11-dim BAP features from the
raw recording with frame shift 5ms, and frame length 25ms.
Linear interpolation of F0 is done over unvoiced segments
before modeling. Unvoiced/voiced identification for every
frame is also extracted as one task in the multi-task training,

along with the above 3 acoustic streams as separate tasks. The
input features for training are the encoded 754 dimensional
one-hot and numerical linguistic features obtained from the
Front-end lexical parsing module given input texts. Both in-
put linguistic features and output acoustic features are nor-
malized to zero-mean and unit-variance before model train-
ing.

3.2. BLSTM baseline
The baseline used in this work is a strong hybrid DNN-
BLSTM system. The model is built by stacking one fully-
connected layer on the bottom and three BLSTM layers on
the top. The fully-connected layer has 2048 hidden units,
and each of the BLSTM layers has 2048 cells (1024 for
each direction). The BLSTM model is trained using back-
propagation through time (BPTT) with stream number 40.

3.3. Training
All models in this work are trained using BMUF [26] opti-
mization on 2 GPUs. The multi-task frame-level MSE (Mean
Squared Error) is used as training criteria. The DFSMN mod-
els are trained using standard back-propagation (BP) with
stochastic gradient descent (SGD), where the batch size is
512. The initial learning rate is 0.0000005, and the learning
rate decays by a factor 0.1 when the validation accuracy does
not increase enough.
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3.4. Objective Evaluations
All DFSMN models are a composition of DFSMN layers and
fully-connected layers. One DFSMN layer has 2048 hid-
den units and 512 projection units, meanwhile each fully-
connected layer has 2048 hidden units. In Table 1, column 3
is in form of Nc +Nd, which denotes the number of DFSMN
layers and fully-connected layers, respectively. Besides, col-
umn 4 is in form of N1, N2, s1, s2, indicating that each DF-
SMN layer looks back N1 frames with stride s1 and looks
ahead N2 frames with stride s2. How DFSMN order and
stride effects the modeling context window is explained by an
example given by Figure 2. Here we let DFSMN look back
and ahead same frames for simplicity.

0.0

1.0

2.0

3.0

4.0

5.0

BLSTM A B C D E F G H I

4.194.094.14.164.234.214.16
3.8

3.35

4.21

Fig. 3. Comparison of various DFSMN models in MOS
(±std)

Since the class of FSMN models has not been applied to
TTS tasks ever before, we start exploration from a DFSMN
model which is shallow and short-sighted. As denoted by A in
Table 1, the model contains 3 DFSMN layers and the memory
order and stride are both 1, which makes it close to a DNN.
In all subsequent experiments, we use a stride of 2, because
stride 2 is better than 1 in many informal groups of compar-
isons, which are not listed in Table 1. We then increase the
order of DFSMN models successively (1⇒ 2⇒ 5⇒ 10) by
fixing the number of DFSMN layers. From D to F, we fix the
order and stride as 10,10,2,2 and increase the network depth
(3 ⇒ 6 ⇒ 10). Again, from F, we continue to increase the
order of DFSMN models (10 ⇒ 20 ⇒ 40 ⇒ 80), finally
reaching a context window of 3200 frames, approaching max
length of utterances in the corpus.

In Table 1, we summarize all the objective measures cal-
culated in this work. These objective measures include root
mean squared error (RMSE) of F0 in Hz, unvoiced/voiced
(U/V) prediction errors, mel-cepstral distortion (MCD) in dB,
BAP Distortion (BAPD) and the total MSE on normalized
acoustic features. The model size and the FLOPS (floating-
point operations to generate per second speech) are also
recorded. All objective measures are calculated on the 3 hour
validation data.

Along with the increment of order and depth, the objec-
tive measures consistently drop. With layer depth equals to
10+2, order and stride equals to 40,40,2,2, system H beats

baseline BLSTM with lower overall MSE, but with less than
1/2 baseline model size, and almost 3 times speech generation
speed.

3.5. Subjective MOS tests
Subjective MOS naturalness evaluation is also conducted.
Synthesis speech generated from all systems from A to I
along with the baseline system are published and evaluated
on an internet platform by 40 paid native Mandarin speakers.
20 utterances are generated by each system, and each utter-
ance is listened by 10 different raters in a completely random
order. Results are shown in Figure 3.

The results are very interesting, system E achieves best
subjective evaluation performance with MOS score 4.23.
Systems get better performance as the order and depth grad-
ually becomes larger until system E, which is as expected.
However, after system E, keeping increasing order and depth
can not further improve system subjective performance,
and the MOS results by these systems seem to oscillate
around the best MOS with some noise. Coming back to
the two questions raised at the beginning of the paper, the
answer is clear. We definitely need to model long-term rela-
tions between speech samples in the speech synthesis tasks,
and the length of dependency modeling should be around
120 = 6(depth) × 10(order) × 2(stride) frames from
previous and future samples at maximum, respectively (ac-
cording to system E). That is a time window of 600ms from
each side of the current frame. Longer time window in our
experiments seems more like noise and our system shows no
further improvement in subjective MOS listening tests.

Besides comparable MOS score with baseline system,
system E generates one second speech with 5.35G floating-
point operations, which is 4 times faster than BLSTM, mak-
ing DFSMN very competitive in embedded production envi-
ronment, where memory saving and computationally efficient
is huge advantage.

4. CONCLUSION AND DISCUSSION

With loops in network structure, RNNs are similar to infi-
nite impulse response (IIR) filter in architecture. On the other
hand, FSMN structure is more like finite impulse response
(FIR) filter. In theory, One can always use a set of FIR filters
to fit a IIR filter. In our paper, we use DFSMN with a range of
order and depth to fit the BLSTM structure. With comparable
synthesis quality, the proposed DFSMN based TTS system E
has much smaller model size, and is computationally much
more efficient than the baseline system.
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[10] Haşim Sak, Andrew Senior, and Françoise Beaufays, “Long
short-term memory based recurrent neural network architec-
tures for large vocabulary speech recognition,” arXiv preprint
arXiv:1402.1128, 2014.

[11] Eric A. Wan, “Finite impulse response neural networks for
autoregressive time series prediction,” Time Series Prediction:
Forecasting the Future and Understanding the Past, p. 195218,
1993.

[12] Michael C. Mozer, “Neural net architectures for temporal se-
quence processing,” Santa Fe Institute Studies in The Sciences
of Complexity, vol. 15, pp. 243243, 1993.

[13] Shiliang Zhang, Cong Liu, Hui Jiang, Si Wei, Lirong Dai, and
Yu Hu, “Non-recurrent neural structure for long-term depen-
dence,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, pp. 871–884, 2017.

[14] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa,
“World: A vocoder-based high-quality speech synthesis sys-
tem for real-time applications,” IEICE TRANSACTIONS on
Information and Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

[15] Shiliang Zhang, Hui Jiang, Shifu Xiong, Si Wei, and Li-Rong
Dai, “Compact feedforward sequential memory networks for
large vocabulary continuous speech recognition.,” in INTER-
SPEECH, 2016, pp. 3389–3393.

[16] Shiliang Zhang, Hui Jiang, Si Wei, and Lirong Dai, “Feed-
forward sequential memory neural networks without recurrent
feedback,” arXiv preprint arXiv:1510.02693, 2015.

[17] Shiliang Zhang, Cong Liu, Hui Jiang, Si Wei, Lirong Dai,
and Yu Hu, “Feedforward sequential memory networks: A
new structure to learn long-term dependency,” arXiv preprint
arXiv:1512.08301, 2015.

[18] Karen Simonyan and Andrew Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[20] Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann
LeCun, “Very deep multilingual convolutional neural net-
works for lvcsr,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2016 IEEE International Conference on. IEEE,
2016, pp. 4955–4959.

[21] Yanmin Qian, Mengxiao Bi, Tian Tan, and Kai Yu, “Very deep
convolutional neural networks for noise robust speech recog-
nition,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 24, no. 12, pp. 2263–2276, 2016.

[22] Yu Zhang, William Chan, and Navdeep Jaitly, “Very deep
convolutional networks for end-to-end speech recognition,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on. IEEE, 2017, pp. 4845–
4849.

[23] Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Le-
cun, “Very deep convolutional networks for text classification,”
in Proceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics: Volume
1, Long Papers, 2017, vol. 1, pp. 1107–1116.

[24] Shiliang Zhang, Ming Lei, Zhijie Yan, and Lirong Dai, “Deep-
fsmn for large vocabulary continuous speech recognition.,” in
submitted to ICASSP 2018.

[25] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhu-
ber, “Highway networks,” arXiv preprint arXiv:1505.00387,
2015.

[26] Kai Chen and Qiang Huo, “Scalable training of deep learn-
ing machines by incremental block training with intra-block
parallel optimization and blockwise model-update filtering,”
in Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE, 2016, pp. 5880–
5884.

4798


