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ABSTRACT

This paper proposes a forward attention method for the sequence-
to-sequence acoustic modeling of speech synthesis. This method
is motivated by the nature of the monotonic alignment from phone
sequences to acoustic sequences. Only the alignment paths that
satisfy the monotonic condition are taken into consideration at each
decoder timestep. The modified attention probabilities at each
timestep are computed recursively using a forward algorithm. A
transition agent for forward attention is further proposed, which
helps the attention mechanism to make decisions whether to move
forward or stay at each decoder timestep. Experimental results
show that the proposed forward attention method achieves faster
convergence speed and higher stability than the baseline attention
method. Besides, the method of forward attention with transition
agent can also help improve the naturalness of synthetic speech and
control the speed of synthetic speech effectively.

Index Terms— sequence-to-sequence model, encoder-decoder,
attention, speech synthesis

1. INTRODUCTION

A statistical parametric speech synthesis (SPSS) [1–3] system typi-
cally consists of a text analysis frontend, an acoustic model, a dura-
tion model and a vocoder for waveform reconstruction. The task of
the acoustic model is to convert linguistic input into acoustic output.
In conventional neural-network-based acoustic modeling [4–8], we
usually align a linguistic feature sequence and the corresponding
acoustic trajectory by a hidden Markov model (HMM) at first due
to the different lengths of these two feature sequences. Then, a deep
neural network (DNN) or long short-term memory (LSTM)-based
[9] acoustic model can be built using the aligned frame-level input-
output pairs. Besides, a separate duration model is always necessary
to predict the duration of HMM states or phones at synthesis time.

On the other hand, sequence-to-sequence (seq2seq) neural net-
works [10, 11] have been proposed recently, which can transduce
an input sequence directly into an output sequence that may have
different length. Encoder-decoder with attention is the most popular
architecture to achieve seq2seq modeling at current stage. It has been
successfully applied to various tasks, such as machine translation
[12, 13], image caption generation [14] and speech recognition
[15–17].
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The seq2seq modeling techniques have also been applied to
speech synthesis in the last two years [18–20]. To our knowledge,
the first work among them [18] adopted content-based attention [12]
to build the encoder-decoder acoustic model for speech synthesis.
The windowing technique and convolutional features [15] were
also used to stabilize the attention alignment. Char2Wav [19]
employed location-based attention [21]. Tacotron [20] improved
the network architecture of encoder and decoder, and adopted a
reduction trick to help the attention moving forward without getting
stuck. There are several advantages of these seq2seq models
for speech synthesis. First, we can train acoustic models from
scratch data conveniently, which helps to build end-to-end systems
without explicit text analysis modules. Second, the separate duration
model is not necessary any more. To predict acoustic features
with appropriate durations from a unified model may lead to better
naturalness of synthetic speech.

Speech synthesis can be considered as a decompressing process,
i.e., one input phone should be translated into tens of acoustic
frames. Therefore, it is a challenge for the attention mechanism to
keep focus on one phone for many decoder timesteps and go forward
step by step. Current seq2seq models for speech synthesis still suffer
from the issue of instability, such as missing phones and repeating
phones in the synthetic speech or even failing to generate intelligible
speech. Besides, without a separate duration model, it is difficult to
control the speed of synthetic speech using seq2seq acoustic models.

Therefore, this paper proposes a forward attention method for
the seq2seq acoustic modeling of speech synthesis. This method
is motivated by the nature of the monotonic alignment from phone
sequences to acoustic sequences. Only the alignment paths that
satisfy the monotonic condition are taken into consideration at
each decoder timestep. The modified attention probability at each
timestep can be computed recursively using a forward algorithm.
Furthermore, a transition agent for forward attention is proposed,
which helps the attention mechanism to make decisions whether to
move forward or stay at each decoder timestep.

Overall, the contributions of this paper are two-fold. First,
we propose a new forward attention method, which achieves faster
convergence speed, better stability of acoustic feature generation,
and higher naturalness of synthetic speech than baseline attention
method. Second, we can control the speed of synthesized speech
based on the proposed forward attention method, which is difficult
for the original content-based attention method.

2. PREVIOUS WORK

A model of encoder-decoder with attention [12, 13] converts an
input sequence into an output target sequence with different length.
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Encoders and decoders are usually recurrent neural networks (RNN).
The encoder first processes the input sequence t = [t1, t2, ..., tN ] to
produce a sequence of hidden representations x = [x1,x2, ...,xN ]
which are more suitable for the attention mechanism to work
with. The decoder then generates the output sequences o =
[o1,o2, ...,oT ], conditioning on x.

At each decoder timestep t, the attention mechanism uses
an internal inference step to perform a soft-selection over these
representations [22]. Let qt denote the query of the output sequence
at the t-th timestep which is usually the hidden state of the decoder
RNN, and πt ∈ {1, 2, ..., N} be a categorical latent variable that
represents the selection among hidden representatioins according to
the conditional distribution p(πt|x, qt). The context vector derived
from the input is defined as

ct =

N∑
n=1

yt(n)xn, (1)

where yt(n) = p(πt = n|x, qt). Finally, the output vector ot can
be computed conditioning on the context ct. In the widely-used
content-based attention mechanism [12], p(πt|x, qt) is calculated
as

et,n = vT tanh(Wqt + V xn + b), (2)

yt(n) = exp(et,n)

/
N∑
m=1

exp(et,m). (3)

Some techniques have been proposed to improve the perfor-
mance of original attention mechanism. One is adding convolutional
features [15] for stabilizing the attention alignment. In detail, k
filters with kernel size l are employed to convolve the alignment of
previous decoder timestep. Let F ∈ Rk×l represent the convolution
matrix. Then it is used as an extra term for calculating the attention
probabilities and we have

ft = F ∗ yt−1, (4)

et,n = vT tanh(Wqt + V xn +Uft,n + b), (5)

where ∗ denotes convolution and yt = [yt(1), . . . , yt(N)]>.
Another technique is windowing [15]. Only a subset of the

encoding results x̂ = [xp−w, ...,xp+w] are considered at each
decoder timestep when using the windowing technique. Here, w is
the window width and p is the middle position of the window, e.g.,
the mode of the alignment probability of previous decoder timestep.
This technique can not only stabilize the attention alignment but also
reduce the computational complexity.

In the application of speech synthesis, the alignment path
{π1, π2, ..., πT } between x and o indicates how input linguistic
features are mapped to their corresponding acoustic features. When
phone sequences are used as the input, we expect that the attention
should focus on one phone to generate context vectors for tens of
acoustic frames, and then move forward to the next phone along
a monotonic direction. Therefore, we will propose a new forward
attention method for the seq2seq acoustic modeling of speech
synthesis in the next section.

3. FORWARD ATTENTION FOR
SEQUENCE-TO-SEQUENCE MODELING

3.1. Forward Attention

Assuming πt at different decoder timesteps are conditionally inde-
pendent given encoding results x and query qt, we can write the

Fig. 1. Grey circles represent a possible alignment path. The
alignment paths composed of arrows satisfy {π0, π1, ..., πt} ∈ P .

probability of an alignment path π1:t = {π1, . . . , πt} as

p(π1:t|x, q1:t) =

t∏
t′=1

p(πt′ |x, qt′) =
t∏

t′=1

yt′(πt′). (6)

We introduce a constant π0 = 1 for initialization and the probability
of the alignment path {π0, π1, ..., πt} can also be defined using
Equation (6). Let P denote the space of alignment paths in which
each path moves monotonically and continuously without skipping
any encoder states. Fig. 1 gives an illustration of the alignment path
when decoding acoustic features from an input phone sequence /SIL
m ao SIL/ for speech synthesis.

Similar to the connectionist temporal classification (CTC) model
[23], a forward variable αt(n) is defined here to be the total
probability of {π0, π1, ..., πt} ∈ P and πt = n as

αt(n)
def
=

∑
π0:t∈P
πt=n

t∏
t′=1

yt′(πt′). (7)

Notice that αt(n) can be calculated recursively from αt−1(n) and
αt−1(n− 1) as

αt(n) = (αt−1(n) + αt−1(n− 1))yt(n). (8)

Then we define

α̂t(n)
def
= αt(n)

/∑
n

αt(n) (9)

to make sure the sum of α̂t(n) for the t-th timestep to be 1 and
substitute α̂t(n) for yt(n) in Equation (1) to calculate the context
vector as

ct =

N∑
n=1

α̂t(n)xn. (10)

The complete forward attention method is described in Algorithm 1.

Algorithm 1 Forward Attention
Initialize:

α̂0(1)← 1
α̂0(n)← 0, n = 2, ..., N

for t = 1 to T do
yt(n)← Attend(x, qt)
α̂′t(n)← (α̂t−1(n) + α̂t−1(n− 1))yt(n)

α̂t(n)← α̂′t(n)
/∑N

m=1 α̂
′
t(m)

ct ←
∑N
n=1 α̂t(n)xn

end for
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3.2. Forward Attention with Transition Agent

A strategy of transition agent (TA) is further designed to help
forward attention control the action of moving forward or staying
during alignment flexibly. Specifically, a transition agent DNN with
one hidden layer and sigmoid output activation unit is adopted to
produce a scalar ut ∈ (0, 1) for each decoder timestep. ut can
be considered as an indicator which describes the probability that
the attended phone should move forward to the next one at the t-th
decoder timestep. ct, ot−1 and qt are concatenated as the input of
this DNN. We simply integrate ut into the calculation of αt(n) as
shown in Algorithm 2.

Algorithm 2 Forward Attention with Transition Agent
Initialize:

α̂0(1)← 1
α̂0(n)← 0, n = 2, ..., N
u0 ← 0.5

for t = 1 to T do
yt(n)← Attend(x, qt)
α̂′t(n)← ((1− ut−1)α̂t−1(n) + ut−1α̂t−1(n− 1))yt(n)

α̂t(n)← α̂′t(n)
/∑N

m=1 α̂
′
t(m)

ct ←
∑N
n=1 α̂t(n)xn

ut ← DNN(ct,ot−1, qt)
end for

The method of forward attention with transition agent can
also be explained from the point of view of a product-of-experts
model (PoE) [24, 25]. A PoE model combines a number of
individual component models (the experts) by taking their product
and normalizing the result. Each component in a product represents
a soft constraint. In our proposed forward attention with transition
agent, one expert (1−ut−1)α̂t−1(n)+ut−1α̂t−1(n− 1) describes
the constraint of monotonic alignment. Another expert is the original
attention probability given by yt(n). The calculation of α̂t(n) is
based on the product of these two experts. Therefore, the alignment
paths that violate the monotonic condition are expected to have low
probability.

Furthermore, the transition agent provides us an opportunity to
control the speed of synthetic speech conveniently, which is usually
difficult for seq2seq acoustic modeling due to the lack of explicit
duration models. When we add positive or negative bias to the
sigmoid output units of the transition agent DNN during generation,
the transition probability ut gets increased or decreased. This
can lead to a faster or slower movement of the attended phones,
corresponding to a faster or slower speed of synthetic speech.

4. EXPERIMENTS

4.1. Experimental Conditions

A Mandarin speech database recorded by a female professional
speaker was used in our experiments. The duration of the database
was 19.8 hours, which contained 13334 utterances of 16kHz speech
data. The database was divided into a training set and a test set,
which had 12219 and 1115 utterances respectively. We built seq2seq
acoustic models based on the framework of Tacotron [20]. The
target acoustic features were log magnitude spectrogram extracted
with Hamming windowing, 50 ms frame length, 12.5ms frame shift,
and 2048-point Fourier transform. Griffin-Lim algorithm [26] was
used to synthesize waveform from the predicted spectrogram. We

Table 1. Number of failed samples for the 9 evaluated seq2seq
models, where “Window” stands for using the windowing technique,
“Conv. Feats.” stands for adding convolutional features and “Plain”
stands for using none of these two techniques.

Model Plain Window Conv. Feats.

Baseline 54 26 7
FA 5 4 0
FA-TA 6 3 0

extracted input features from phone sequences, which were simply
composed of the phone label (61-dimension one-hot vector) and
tone label (5-dimension one-hot vector) for each phone. These
two vectors were first embedded into 224 and 32 dimensional
descriptions respectively, and then passed to separate pre-nets. The
pre-nets for phone and tone information had the same width as
their embedding dimension. The outputs of both pre-nets were
concatenated to form the input of the encoder. We employed the
reduction trick with r = 2 in all experiments.

Altogether 9 seq2seq acoustic models were built for compari-
son.1 They were divided into 3 groups, which used the conventional
attention method introduced in Section 2 (baseline) , the proposed
forward attention method (FA), and the forward attention with
transition agent (FA-TA) respectively. The 3 systems in each group
adopted the windowing technique, the convolutional features, or
none of them. For the windowing technique, we set w = 2. For
using convolutional features, we used k = 10 and l = 5 in our
experiments. We tried to train a system with location-based attention
[21]. However, the model failed to converge in our experiments.

We also built a LSTM-based system [5] for comparison. 41-
dimension mel-cepstral coefficients (MCCs), and F0 in log-scale
were extracted every 5ms using STRAIGHT [27]. The LSTM
acoustic model had 2 hidden layers and 512 units per layer. The
model inputs include 523 binary features for categorical linguistic
contexts (e.g. phones and tones identities, stress marks) and 9
numerical linguistic contexts (e.g. the number frames and position
of current frame in a phone). A separate DNN-based duration model
was constructed to predict state durations at synthesis time. The
DNN had 3 hidden layers and 1024 units per layer, using 523-
dimension binary linguistic contexts as input.

4.2. Stability of Sequence-to-Sequence Feature Generation

We first evaluated the stability of acoustic feature generation using
the 9 built seq2seq models with different attention mechanism. 120
utterances were randomly selected from the test set and synthesized
using these systems. The longest utterance had about 100 phones.
An experienced speech synthesis researcher was asked to listen to
all these synthetic samples and label the failed samples, i.e., the
synthetic utterances with repeating phones, missing phones, or any
kind of perceivable mistakes. The results are summarized in Table 1.

As we can see from this table, the baseline system with plain
content-based attention suffered from the mistakes made in the
synthetic speech. A close examination showed that this was caused
by the inappropriate alignments given by the attention probabilities.
Mistakes occurred when the alignment had aliasing, became discon-
nected, or got stuck at the same position. By introducing the win-
dowing technique or using convolutional features, the performance

1Audio samples available on https://jxzhanggg.github.io/
ForwardAttention
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Fig. 2. Alignments of an utterance given by the baseline system and
the FA-TA system after 1, 3, 7 and 10 epochs training. The top row of
each subgraph in the FA-TA column shows the transition probability
u predicted by the transition agent, and the rest rows show α̂t(n) in
Algorithm 2.

Table 2. Average preference scores(%) on naturalness, where
“*” stands for using convolution features. “N/P” stands for no
preference. p denotes the p-value of a t-test between two systems.

FA FA-TA FA-TA* Baseline LSTM N/P p

22.0 51.5 - - - 26.5 < 10−5

- 43.0 19.0 - - 38.0 < 10−5

- 43.0 - 13.5 - 43.5 < 10−5

- 44.5 - - 37.5 18.0 0.275

of stability always got improved. The two forward attention methods
achieved better stability than the baseline attention method. The best
systems adopted forward attention (with or without transition agent)
and convolutional features. Moreover, we found that the forward
attention systems converged much faster than the baseline systems.
Fig. 2 shows how the alignment changed in the plain baseline system
and the plain FA-TA system after 1, 3, 7 and 10 epochs of model
training.

4.3. Naturalness of Synthetic Speech

Several groups of preferences were conducted to evaluate the nat-
uralness of synthetic speech using different systems. 20 sentences
which were correctly synthesized by all systems in the experiment of
Section 4.2 were adopted to generate the stimuli. In each preference
test, the utterances synthesized by two comparative systems were
evaluated in random order by 10 native listeners using headphones.
The listeners were asked to judge which utterance in each pair had
better naturalness or there was no preference.

We first compared the plain FA system, the plain FA-TA system,
and the FA-TA system using convolutional features. The results
are shown in the first two rows of Table 2. The results show
the advantage of transition agent and the negative effect of adding
convolutional features on the naturalness of synthetic speech. One
possible reason is that convolutional features acted as a constrain of
alignment and impaired the prosodic modeling capacity of attention

Fig. 3. Average ratios of sentence duration modification achieved by
controlling the bias value in the FA-TA system. Error bars represent
the standard deviations.

mechanism. Then, we conducted similar experiments to compare the
FA-TA system with the plain baseline system and the conventional
LSTM system. The results shown in the last two rows of Table 2
demonstrate that the FA-TA system outperformed the baseline and
achieved comparable results to the LSTM system. We should notice
that the LSTM system employed rich linguistic information as input
while the FA-TA system only used phone and tone labels for acoustic
modeling.

4.4. Speed Control Using Forward Attention with Transition
Agent

In the proposed forward attention with transition agent, as we adding
positive or negative bias to the sigmoid output units of the DNN
transition agent during generation, the transition probability gets
increased or decreased. This leads to a faster or slower of attention
results. An experiment was conducted using the plain FA-TA system
to evaluate the effectiveness of speed control using this property.
We used the same test set of the 20 utterances in Section 4.3. We
increased or decreased the bias value from 0 with a step of 0.2, and
synthesized all sentences in the test set. We stopped once one of
the generated samples had the problem of missing phones, repeating
phones, or making any perceivable mistakes. Then we calculated
the average ratios between the lengths of synthetic sentences using
modified bias and the lengths of synthetic sentences without bias
modification. Fig. 3 show the results in a range of bias modification
where all samples were generated correctly. From this figure, we
can see that more than 10% speed control can be achieved using the
proposed forward attention with transition agent. Informal listening
test showed that such modification did not degrade the naturalness
of synthetic speech.

5. CONCLUSIONS

A forward attention method in the seq2seq acoustic modeling for
speech synthesis has been proposed. Experimental results show
that this method has the advantages of faster convergence during
model training, higher stability of acoustic feature generation, and
feasibility of controlling the speed of synthetic speech. This
paper applies the proposed forward attention method to the speech
synthesis task. This method can also be modified and adapted to
other tasks, such as speech recognition and other seq2seq problems
having the nature of monotony. Investigation on the performance of
forward attention in these tasks will be apart of our future work.
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