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ABSTRACT
Recently, there has been a growing interest in end-to-end
speech recognition that directly transcribes speech to text
without any predefined alignments. In this paper, we explore
the use of attention-based encoder-decoder model for Man-
darin speech recognition on a voice search task. Previous
attempts have shown that applying attention-based encoder-
decoder to Mandarin speech recognition was quite difficult
due to the logographic orthography of Mandarin, the large
vocabulary and the conditional dependency of the attention
model. In this paper, we use character embedding to deal
with the large vocabulary. Several tricks are used for effective
model training, including L2 regularization, Gaussian weight
noise and frame skipping. We compare two attention mech-
anisms and use attention smoothing to cover long context in
the attention model. Taken together, these tricks allow us to
finally achieve a character error rate (CER) of 3.58% and a
sentence error rate (SER) of 7.43% on the MiTV voice search
dataset. While together with a trigram language model, CER
and SER reach 2.81% and 5.77%, respectively.

Index Terms— automatic speech recognition, end-to-end
speech recognition, attention model, voice search

1. INTRODUCTION

Voice search (VS) allows users to acquire information by a
simple voice command. It has become a dominating function
on various devices such as smart phones, speakers and TVs,
etc. Automatic speech recognition (ASR) is the first step for a
voice search task and thus its performance highly affects the
user experience.

Deep Neural Networks (DNNs) have shown tremendous
success and are widely used in ASR, usually in combination
with Hidden Markov Models (HMMs) [12, 9, 21]. These
systems are based on a complicated architecture with sev-
eral separate components, including acoustic, phonetic and
language models, which are usually trained separately, each
with a different objective. Recently, some end-to-end neu-
ral network ASR approaches, such as connectionist temporal
classification (CTC) [11, 1, 17] and attention-based encoder-
decoder [6, 8, 3, 4, 5, 14, 23, 7], have emerged. These end-

to-end trained systems directly map the input acoustic speech
to grapheme (or word) sequences and the acoustic, pronunci-
ation, and language modeling components are trained jointly
in a single system.

Attention-based models have become increasingly popu-
lar and with delightful performances on various sequence-to-
sequence tasks, such as machine translation [2], text summa-
rization [20], image captioning [22] and speech recognition.
In speech recognition, the attention-based approaches usually
consist of an encoder network, which maps the input acoustic
speech into a higher-level representation, and an attention-
based decoder that predicts the next output symbol condi-
tioned on the sequence of previous predictions. A recent com-
parison of sequence-to-sequence models for speech recogni-
tion [19] has shown that Listen, Attend and Spell (LAS) [4], a
typical attention-based approach, offered improvements over
other sequence-to-sequence models.

Attention-based encoder-decoder performs considerably
well in English speech recognition [7] and many attempt-
s have been proposed to further optimize the model [8, 23].
However, applying attention-based encoder-decoder to Man-
darin was found quite problematic. In [5], Chan et. al. have
pointed out that the attention model is difficult to converge
with Mandarin data due to the logographic orthography of
Mandarin, the large vocabulary and the conditional depen-
dency of the attention model. They have proposed a joint
Mandarin Character-Pinyin model but with limited success:
the character error rate (CER) is as high as 59.3% on GALE
broadcast news corpus. In this paper, we aim to improve the
LAS approach for Mandarin speech recognition on a voice
search task. Instead of using joint Character-Pinyin model,
we directly use Chinese characters as network output. Specif-
ically, we map the one-hot character representation to an em-
bedding vector via a neural network layer. We also use sev-
eral tricks for effective model training, including L2 regu-
larization [13], Gaussian weight noise [15] and frame skip-
ping [18]. We compare two attention mechanisms and use at-
tention smoothing to cover long context in the attention mod-
el. Taken together, these tricks allow us to finally achieve a
promising result on a Mandarin voice search task.
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2. LISTEN, ATTEND AND SPELL

Listen, Attend and Spell (LAS) [4] is an attention-based
encoder-decoder network which is often used to deal with
variable-length input to variable-length output mapping prob-
lems. The encoder (the Listen module) extracts a higher-level
feature representation (i.e., an embedding) from the input
features. Then the attention mechanism (the Attend module)
determines which encoder features should be attended in or-
der to predict the next output symbol, resulting in a context
vector. Finally, the decoder (the Spell module) takes the
attention context vector and an embedding of the previous
prediction to generate a prediction of the next output.

Specifically, in Fig. 1, the encoder we used is a bidirec-
tional long short term memory (BLSTM) recurrent neural net-
work (RNN) that generates a high-level feature representation
sequence h = (h1, ..., hT ) from the input time-frequency rep-
resentation sequence of speech x:

h = Listen(x) (1)

In Fig. 2, the AttendAndSpell is an attention-based trans-
ducer:

p(y|x) = AttendAndSpell(y,h). (2)

In practice, the process predicts the character yi at a time ac-
cording to the probability distribution:

p(yi|x, yi−1, · · · , y1) = CharacterDist(si, ci), (3)

where si is an LSTM hidden state for time i, computed by

si = DecodeRNN([yi−1, ci−1], si−1), (4)

and the context vector

ci = AttentionContext(si,h). (5)

TheDecodeRNN is a unidirectional LSTM RNN which pro-
duces a transducer state si and theAttentionContext gener-
ates context ci with a multi-layer perceptron (MLP) attention
network. Finally, the probability distributionCharacterDist
is computed by a softmax function.

3. METHODS

In this section, we detail the tricks we used in LAS-based
speech recognition for the Mandarin voice search task.

3.1. Embedding and regularization

Chinese has a large set of characters and even the number of
frequently-used characters can reach 3,500. Chan et. al. [5]
have pointed out that the large vocabulary with limited train-
ing data made the model difficult to learn and generalize well.
This means that, for an end-to-end Mandarin system that di-
rectly outputs characters, it is critical to use an appropriate
embedding to ensure the converge of the model.

x1 x3 x5 x7 x2T-1

h2 h3 h4 hTh1

h = (h1, ,hT)

Fig. 1. The encoder model is a BLSTM that extracts h from
input x. Frame skipping is employed during training.
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Fig. 2. The AttendAndSpell model composed by MLP (the
Attention mechanism) and LSTM (the Decoder model).

In this paper, we first represent each character in a one-
hot scheme and further embed it to a vector using neural net-
work. Specifically, in Fig. 2, a fully-connected embedding
layer (shaded circle) is used to connect the one-hot input and
the subsequent BLSTM layer of the LAS encoder. The weight
matrix We of the character embedding layer is updated in the
whole LAS model training procedure. The embedding layer
works as follows. Assume the size of the vocabulary is n and
the dimension of the embedding layer is m. Then the weight
matrix We is of size n×m. When the character’s index is i,
the embedding layer will pass the ith row of We to the sub-
sequent encoder. That is, it acts as a lookup-table, making
the training procedure more efficient. We find that this simple
character embedding provides significant benefit to the model
convergence and robustness.

The LAS model often gives poor generalization to new
data without regularizations. Thus two popular regularization
tricks are used in this paper: L2 regularization and Gaussian
weight noise [13, 15].
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3.2. Attention mechanism

The attention mechanism selects (or weights) the input frames
to generate the next output element. In this study, we com-
pared the content-based attention and the location-based at-
tention.

Content-based attention: Borrowed from neural ma-
chine translation [2], content-based attention can be directly
used in speech recognition. Here, the context vector ci is
computed as a weighted sum of hi:

ci =

T∑
j=1

αi,jhj . (6)

The weight αi,j of each hj is computed by

αi,j = exp(ei,j)/
T∑

j=1

exp(ei,j), (7)

where
ei,j = Score(si−1, hj). (8)

Here the Score is an MLP network which measures how well
the inputs around position j and the output at position imatch.
It is based on the LSTM hidden state si−1 and hj of the input
sentence. Specifically, it can be further described by

ei,j = w>tanh(Wsi−1 +Vhj + b), (9)

where w and b are vectors, and W and V are matrices.
Location-based attention: In [8], location-awareness

was added to the attention mechanism to better fit the speech
recognition task. Specifically, the content-based attention
mechanism is extended by making it take into account the
alignment at the previous step. k vectors fi,j are extract-
ed for every position j of the previous alignment αi−1 by
convolving it with a matrix F:

fi = F ∗αi−1. (10)

By adding fij , the scoring mechanism is changed to

ei,j = w>tanh(Wsi−1 +Vhj +Uf ij + b). (11)

3.3. Attention smoothing

We found that long context information is important for the
voice search task. Hence we explore attention smoothing
to get longer context in the attention mechanism. When
the input sequence h is long, the αi distribution is typically
very sharp on convergence, and thus it focuses on only a few
frames of h. To keep the diversity of the model, similar to [8],
we replace the softmax function in Eq. (7) with the logistic
sigmoid σ:

αi,j = σ(ei,j). (12)

3.4. Frame skipping

Frame skipping is a simple-but-effective trick that has been
previously used for fast model training and decoding [18]. As
training BLSTM is notoriously time-consuming, we borrow
this idea in the training of LAS encoder which is BLSTM. As
our task does not consider online decoding, we use all frames
to generate the context h during decoding.

3.5. Language model

At each time step, the decoder generates a character de-
pending on the previous ones, similar to the mechanism of a
language model (LM). Therefore, the attention model works
pretty good without using any explicit language model. How-
ever, the model itself is insufficient to learn a complex lan-
guage model [3]. Hence we build a character-level language
model T from a word-level language model G that is trained
using the training transcripts and a lexicon L that simply
spells out the characters of each word. In other words, the in-
put of L is characters and output is words. More specifically,
we build a finite state transducer (FST) T = min(det(L◦G))
to calculate the log-probability for the character sequences.
We add T to the cost of decoder’s output:

C = −
∑
i

[log p(yi|x, yi−1, · · · , y1) + γT ] (13)

During decoding, we minimize the cost C which combines
the attention-based model and the external language model
with a tunable parameter γ.

4. EXPERIMENTS

4.1. Data

We used a 3000-hour dataset for LAS model training, which
contains approximately 4M voice search utterances, collect-
ed from the microphone on the MiTV remote controller. The
dataset was composed of diverse search entries on popular TV
programs, movies, songs and personal names (e.g. movie s-
tars). The test set and held-out validation set were also from
the MiTV voice search and each was composed of 3,000 utter-
ances. As input features, we used 80 Mel-scale filterbank co-
efficients computed every 10ms with delta and delta-delta ac-
celeration coefficients. Mean and variance normalization was
conducted for each speaker. For the decoder model, we used
6,925 labels: 6,922 common Chinese characters, unknown to-
ken and sentence start and end tokens (<sos>/<eos>).

4.2. Training

We trained LAS models, in which the encoder was a 3-layer
BLSTM with 256 LSTM units per-direction (or 512 in total)
and the decoder was a 1-layer LSTM with 256 LSTM units.
All the weight matrices were initialized with the normalized

4766



Table 1. Results of our attention-based models with a beam
size of 30, τ = 2 and γ = 0.1.

model CER/% SER/%
CTC 5.29 14.57

Content based attention 4.05 9.10
+ trigram LM 3.60 7.20

Location based attention 3.82 8.17
+ trigram LM 3.26 6.33

Attention smoothing 3.58 7.43
+ trigram LM 2.81 5.77

Fig. 3. The effect of the decoding beam width for the content-
based attention and attention smoothing (τ = 1).

initialization [10] and the bias vectors were initialized to 0.
Gradient norm clipping to 1 was applied, together with Gaus-
sian weight noise and L2 weight decay 1e-5. We used ADAM
as the optimization method [16] while we decayed the learn-
ing rate from 1e-3 to 1e-4 after it converged. The softmax
output and the cross entropy cost were combined as the model
cost. Frame skipping was used in the encoder during training.
For comparison, we also constructed a CTC model that has
the same structure with the the LAS encoder.

4.3. Decoding

We used a simple left-to-right beam search algorithm during
decoding [8]. We invesitaged the importance of the beam-
search width on decoding accuracy [8] and the impact of the
temperature of the softmax function [5]. The temperature can
smooth the distribution of characters. We changed the charac-
ter probability distribution by a temperature hyperparameter
τ :

yt = exp(ot/τ)/
∑
j

exp(oj/τ). (14)

where ot is the input of the softmax function.

4.4. Results

Table 1 shows that our models performed extremely well in
the Mandarin voice search task. The content-based attention
model achieved a CER of 4.05% and a SER of 9.1%. The
location-based attention model achieved a CER of 3.82% and

Fig. 4. The impact of the temperature for content-based at-
tention and attention smoothing (beam-size=30).

a SER of 8.17%, which outperformed the content-based at-
tention model. By using attention smoothing on the content-
based attention model, the CER was reduced to 3.58% ( or
11.6% relative gain over the content-based attention). We
believe that the improvement is mainly because the sigmoid
function keeps the diversity of the model and smooths the fo-
cus found by the attention mechanism.

Fig. 3 shows the effect of the decoding beam width on
the WER/SER for the test set. The CER reached the low-
est (4.78%) at a beam width of 30. We cannot observe extra
benefit when further increasing the beam width. In Fig. 4,
we can see that attention smoothing achieves the best perfor-
mance when τ = 2 and there is no additional benefits when
we further increase the temperature. We see the same obser-
vation on the validation set as well. Meanwhile, we inves-
tigated the effect of adding language model. During decod-
ing, with the help of a trigram LM that was trained using 4M
voice search entries, further gains can be observed. Finally,
attention smoothing + trigram LM achieved the lowest
CER of 2.81%. This was obtained when γ = 0.1.

5. CONCLUSION

In this paper, we reported our preliminary results on attention-
based encoder-decoder for Mandarin speech recognition.
With several tricks, our model finally achieves a CER of
3.58% and a SER of 7.43% on a Mandarin voice search task
without a language model. Note that the voice search con-
tent on MiTV is kind of limited with closed domains. In the
future, we will further investigage our approach on general
ASR tasks through public datasets.
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