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ABSTRACT

Direct acoustics-to-word (A2W) models in the end-to-end paradigm
have received increasing attention compared to conventional sub-
word based automatic speech recognition models using phones,
characters, or context-dependent hidden Markov model states. This
is because A2W models recognize words from speech without
any decoder, pronunciation lexicon, or externally-trained language
model, making training and decoding with such models simple.
Prior work has shown that A2W models require orders of magnitude
more training data in order to perform comparably to conventional
models. Our work also showed this accuracy gap when using the
English Switchboard-Fisher data set. This paper describes a recipe
to train an A2W model that closes this gap and is at-par with state-
of-the-art sub-word based models. We achieve a word error rate
of 8.8%/13.9% on the Hub5-2000 Switchboard/CallHome test sets
without any decoder or language model. We find that model initial-
ization, training data order, and regularization have the most impact
on the A2W model performance. Next, we present a joint word-
character A2W model that learns to first spell the word and then
recognize it. This model provides a rich output to the user instead of
simple word hypotheses, making it especially useful in the case of
words unseen or rarely-seen during training.

Index Terms— End-to-end models, direct acoustics-to-word
models, automatic speech recognition, deep learning

1. INTRODUCTION

Conventional sub-word based automatic speech recognition (ASR)
typically involves three models - acoustic model (AM), pronuncia-
tion model and decision tree (PMT), and language model (LM) [1].
The AM computes the probability pAM(A|s) of the acoustics A
given the sub-word units s. The PMT models the probability
pPMT(w|s) of the word sequence w given the sub-word unit se-
quence s. The LM acts as a prior pLM(w) on the word sequence w.
Hence, finding the most likely sequence of words given the acoustics
A becomes a maximum aposteriori optimization problem over the
following probability density function:

pASR(w|A) ∝ pLM(w)p(A|w) (1)

= pLM(w)
∑
s

pAM(A|s,w)pPMT(s|w) (2)

≈ pLM(w)
∑
s

pAM(A|s)pPMT(s|w) . (3)

While both the AM and LM in modern ASR systems use deep neural
networks (DNNs) and their variants [2], the PMT is usually based on
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decision trees and finite state transducers. Training the AM requires
alignments between the acoustics and sub-word units, and several
iterations of model training and re-alignment. Recent end-to-end
(E2E) models have obviated the need for aligning the sub-word units
to the acoustics. Popular E2E models include recurrent neural net-
works (RNNs) trained with the connectionist temporal classification
(CTC) loss function [3–10] and the attention-based encoder-decoder
RNNs [11–15].These approaches are not truly E2E because they still
use sub-word units, and hence require a decoder and separately-
trained LM to perform well.

In contrast, the recently-proposed direct acoustics-to-word
(A2W) models [16, 17] train a single RNN to directly optimize
pASR(w|A). This eliminates the need for sub-word units, pronun-
ciation model, decision tree, decoder, and externally-trained LM,
which significantly simplifies the training and decoding process.
However, prior research on A2W models has shown that such mod-
els require several orders of magnitude more training data when
compared with conventional sub-word based models. This is be-
cause the A2W models need sufficient acoustic training examples
per word to train well. For example, [16] used more than 125,000
hours of speech to train an A2W model with a vocabulary of nearly
100,000 words that matched the performance of a state-of-the-art
CD state-based CTC model. Our prior work [17] explored A2W
models for the well-known English Switchboard task and presented
a few initialization techniques to effectively train such models with
only 2000 hours of data. However, we still observed a gap of around
3-4% absolute in WER between the Switchboard phone CTC and
the A2W models on the Hub5-2000 evaluation set.

This paper further improves the state-of-the-art in A2W mod-
els for English conversational speech recognition. We present a
training recipe that achieves WER of 8.8%/13.9% on the Switch-
board/CallHome subsets of the Hub5-2000 evaluation set, compared
to our previous best result of 13.0%/18.8% [17]. These new re-
sults are at par with several state-of-the-art models that use sub-word
units, a decoder, and a LM. We quantify the gains made by each in-
gredient of our training recipe and conclude that model initialization,
training data order, and regularization are the most important factors.

Next, we turn our attention to the issue of data sparsity while
training A2W models. The conventional solution to this problem
uses a sub-word unit-based model that needs a decoder and LM dur-
ing testing. As an alternative, we propose the spell and recognize
(SAR) CTC model that learns to first spell the word into its charac-
ter sequence and then recognize it. Not only does this model retain
all advantages of a direct A2W model, it also provides rich hypothe-
ses to the user which are readable especially in the case of unseen
or rarely-seen words. We illustrate the benefits of this model for
out-of-vocabulary (OOV) words.

The next section discusses the baseline A2W model [17]. Sec-
tion 3 discusses the proposed training recipe, an analysis of the im-
pact of individual ingredients, and the results. Section 4 presents
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our SAR model that jointly models words and characters. The paper
concludes in Section 5 with a summary of findings.

2. BASELINE ACOUSTICS-TO-WORD MODEL

2.1. CTC Loss

Conventional losses used for training neural networks, such as cross-
entropy, require a one-to-one mapping (or alignment) between the
rows of the T×D input feature vector matrix A and length-L output
label sequence y. The connectionist temporal classification (CTC)
loss relaxes this requirement by considering all possible alignments.
It introduces a special blank symbol φ that expands the length-L tar-
get label sequence y to multiple length-T label sequences ỹ contain-
ing φ, such that ỹ maps to y after removal of all repeating symbols
and φ. The CTC loss is then

p(y|A) =
∑

ỹ∈Ω(y)

p(ỹ|A) =
∑

ỹ∈Ω(y)

T∏
t=1

p(ỹt|at) , (4)

where the set Ω(y), is the set of CTC paths for y, and at/ỹt denote
the tth elements of the sequences. A forward-backward algorithm
efficiently computes the above loss function and its gradient, which
is then back-propagated through the neural network [3]. The next
section describes the baseline A2W model [17].

2.2. Baseline A2W Model

We used two standard training data sets for our experiments. The
“300-hour” set contained 262 hours of segmented speech from the
Switchboard-1 audio with transcripts provided by Mississippi State
University. The “2000-hour” set contained an additional 1698 hours
from the Fisher data collection and 15 hours from CallHome audio.

We extracted 40-dimensional logMel filterbank features over 25
ms frames every 10 ms from the input speech signal. We used
stacking+decimation [6], where we stacked two successive frames
and dropped every alternate frame during training. This resulted
in a stream of 80-dimensional acoustic feature vectors at half the
frame rate of the original stream. The baseline models also used
100-dimensional i-vectors [18] for each speaker, resulting in 180-
dimensional acoustic feature vectors.

The baseline A2W model consisted of a 5-layer bidirectional
LSTM (BLSTM) RNN with a 180-dimensional input and 320-
dimensional hidden layers in the forward and backward directions.
We picked words with at least 5 occurrences in the training data in
the vocabulary. This resulted in a 10,000-word output layer for the
300-hour A2W system and a 25,000-output layer for the 2000-hour
system. As noted in [17], initialization is crucial to training an A2W
model. Thus, we initialized the A2W BLSTM with the BLSTM
from a trained phone CTC model, and the final linear layer using
word embeddings trained using GloVe [19].

Table 1 gives the WERs of the baseline A2W and phone CTC
models reported in [17] on the Hub5-2000 Switchboard (SWB) and
CallHome (CH) test sets. We performed the decoding of the A2W
models via simple peak-picking over the output word posterior dis-
tribution, and removing repetitions and blank symbols. The phone
CTC model used a full decoding graph and a LM. We observe that
the 2000-hour A2W model lags behind the phone CTC model by
3.4%/2.8% absolute WER on SWB/CH, and the gap is much bigger
for the 300-hour models. We next discuss our new training recipe.

Table 1. This table shows the Switchboard/CallHome WERs for our
baseline 300/2000-hour A2W and phone CTC models from [17].

Data (hrs) AM LM SWB CH
300 A2W - 20.8 30.4
300 Phone CTC Small 14.5 25.1

2000 A2W - 13.0 18.8
2000 Phone CTC Big 9.6 16.0

3. UPDATED TRAINING RECIPE

Our prior experience with training A2W models led us to conclude
that model initialization and regularization are important aspects of
training such models. One key reason for this is the fact that A2W
models attempt to solve the difficult problem of directly recogniz-
ing words from acoustics with a single neural network. Hence, our
previously-proposed strategy of initializing the A2W BLSTM with
the phone CTC BLSTM and the final linear layer with word em-
beddings gave WER gains. In this work, we started by exploring
several other strategies in the same spirit. All our new experiments
were conducted in PyTorch [20] with the following changes com-
pared to [17]:

• We included delta and delta-delta coefficients because they
slightly improved the WER. Hence, the total acoustic vector
was of size 340 after stacking+decimation and appending the
100-dimensional i-vectors.

• We initialized all matrices to samples of a uniform distribu-
tion over (−ε, ε) where ε is the inverse of the

√
fan-in or the

size of the input vector [21]. This takes the dimensionality
of the input vectors at each layer in account, which improved
convergence compared to our old strategy of using ε = 0.01.

• In place of new-bob annealing [17], we kept a fixed learn-
ing rate for the first 10 epochs and decayed it by

√
0.5 every

epoch.

3.1. Training Data Order

Training data order is an important consideration for sequence-to-
sequence models such as E2E ASR systems because such models
operate on the entire input and output sequences. All training se-
quences have to be padded to the length of the longest sequence in
the batch in order to do GPU tensor operations. Random sequence
order during batch creation is not memory-efficient because batches
will contain a larger range of sequence lengths, which will lead to
more wasteful padding on average. Hence, sequences have to be
sorted before batch creation.

We compare the impact of sorting input acoustic sequences in or-
der of ascending and descending length in Table 2. Our results show
that ascending order gives significantly better WER than sorting in
descending order. The intuition behind this result is that shorter se-
quences are easier to train on initially, which enables the network to
reach a better point in the parameter space. This can be regarded as
an instance of curriculum learning [22].

3.2. Momentum and Dropout

We also experimented with Nesterov momentum-based stochastic
gradient descent (SGD), which has been shown to give better con-
vergence compared to simple SGD on several tasks. We use the
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Table 2. This table shows the impact of various training strategies
on the 300-hour A2W model.

Model SWB CH
Descending Order 23.0 30.7
Ascending Order 18.3 28.1
+Momentum 18.0 27.4
+Dropout 17.4 26.9
+Output Projection 16.9 26.3
+Phone BLSTM Init. 14.9 23.8
+Bigger Model 14.6 23.6
Previous best [17] 20.8 30.4

following parameter updates:

vn = ρvn−1 + λ∇f(Θn−1 + ρvn−1) (5)
Θn = Θn−1 − vn , (6)

where vn is the velocity or a running weighted-sum of the gradient
of the loss function f . The constant ρ is usually set to 0.9 and λ is the
learning rate, set to 0.01 in our experiments. We also experimented
with a dropout of 0.25 in order to prevent over-fitting. Table 2 shows
that both momentum and dropout improve the WER.

3.3. Output Projection Layer

In contrast with phone or character-based CTC models, A2W models
have a large output size equal to the size of the vocabulary. Prior
research [23] has shown that decomposing the output linear layer of
size V ×D into two layers of sizes V × d and d ×D with d < D
speeds-up model training due to reduced number of parameters. We
experimented with a projection layer of size 256 and found that it
speeds-up training by a factor of 1.2x and also slightly improves the
WER, which we attribute to a reduction in over-fitting.

3.4. Phone BLSTM Initialization and Bigger Model

We finally initialized our model with the phone CTC BLSTM which
gave improvements in our previous work [17]. As expected, this
initialization lowered the WER, despite the presence of all the above
useful strategies. With dropout in place, we trained a bigger 6-layer
model with 512-dimensional BLSTM and saw slight gains in WER.

3.5. Final Model and Results

We initialized the 2000-hour A2W model with the best 300-hour
A2W model and used the same recipe for training. Table 3 shows
the WER of the resulting system along with our previous best A2W
WER and several other published results. We obtained a significant
improvement of 4.2%/4.9% absolute WER compared to our previous
result. We also see that our direct A2W is at par with most hybrid
CD state-based and E2E models, while utilizing no decoder or LM.
As noted in [18], the CallHome test set is more challenging than
Switchboard because 36 out of 40 speakers in the latter appear in
the training set. The results on the CallHome test set are especially
good, where our A2W model matches the best result obtained using
a hybrid BLSTM [18] that used exactly the same acoustic features1.

1Adding additional FMLLR features gives a WER of 7.2%/12.7% [18].

Table 3. This table shows the WER of our current and previous-best
A2W model trained on the 2000-hour Switchboard+Fisher set. We
have also included several other published results for comparison.
Results with ∗ use data augmentation on the 2000-hour training set.

Model Output Decoder/ SWB CH
Units LM

BLSTM+LF MMI [24] CD state Y/Y 8.5 15.3
LACE+LF MMI [25] CD state Y/Y 8.3 14.8
Dilated Conv. [26] CD state Y/Y 7.7 14.5
BLSTM [18] CD state Y/Y 7.7 13.9
Iterated CTC [27] Char Y/Y 11.3 18.7
CTC∗ [28] Char Y/Y 9.0 17.7
Gram-CTC∗ [28] Char N-gm Y/Y 7.9 15.8
CTC+Gram-CTC∗ [28] Char N-gm Y/Y 7.3 14.7
RNN-T∗ [29] Char Y/N 8.5 16.4
Attention∗ [29] Char Y/N 8.6 17.8
CTC A2W [17] Word N/N 13.0 18.8
CTC A2W (current) Word N/N 8.8 13.9

We also note that our A2W model uses a vocabulary of 25,000
words which has an OOV rate of 0.5%/0.8% on the SWB/CH test
sets. All the other models used much bigger vocabularies and hence
did not suffer from OOV-induced errors.

3.6. Ablation Study

In order to understand the impact of individual components of our
recipe, we conducted an ablation study on our best 300-hour A2W
model. We removed each component of the recipe while keeping
others fixed, trained a model, and decoded the test sets. Figure 1
shows the results of this experiment. We observed that changing the
training data order from ascending to descending order of length re-
sulted in the biggest drop in performance. The second biggest factor
was dropout - excluding it leads to over-training because the heldout
loss rises after epoch 10. Choosing a smaller 5-layer model instead
of 6-layer led to the next largest drop in WER. Finally, as expected,
excluding the projection layer had the least impact on WER.

Fig. 1. This figure shows the results of the ablation experiment on
our best 300-hour A2W model. The numbers in parentheses in the
legend give the SWB/CH WERs.

4761



Despite strong results, the A2W model does not give any mean-
ingful output to the user in case of OOV words but simply emits an
“UNK” tag. This is not a big problem for the Switchboard task be-
cause the OOV rates for the SWB/CH test sets are 0.5%/0.8% on
the 25,000 word vocabulary. But other tasks might be affected by
the limited vocabulary. As a solution, the next section discusses our
joint word-character model that aims to provide the user with a richer
output that is especially useful for unseen or rarely-seen words.

4. SPELL AND RECOGNIZE MODEL

The advantage of the A2W model is that it directly emits word hy-
potheses by forward-passing acoustic features through a RNN with-
out needing a decoder or externally-trained LM. However, its vocab-
ulary is fixed and OOV words cannot be recognized by the system.
Furthermore, words infrequently seen in the training data are not rec-
ognized well by the network due to insufficient training examples.
Prior approaches to dealing with the above limitations completely
rely on sub-word units. This includes work on character models [9,
27] and N-grams [28], RNN-Transducer [29], RNN-Aligner [30].

In contrast, our approach is to have the best of both worlds by
combining the ease of decoding a A2W model with the flexibility of
recognizing unseen/rarely-seen words with a character-based model.
One natural candidate is a multi-task learning (MTL) model contain-
ing a shared lower network, and two output networks corresponding
to the two tasks - recognizing words and characters. However, such
an MTL network is not suitable for our purpose because the recog-
nized word and character sequences for an input speech utterance
are not guaranteed to be synchronized in time. This is because the
CTC loss does not impose time-alignment on the output sequence.

The proposed spell and recognize (SAR) model circumvents this
alignment problem by presenting training examples that contain both
words and characters. This allows us to continue to leverage an A2W
framework without resorting to more complex graph-based decoding
methodologies employed in, for example, word-fragment based sys-
tems [31–33]. Consider the output word sequence “THE CAT IS
BLACK” The SAR model uses the following target sequence:

b-t h e-e THE b-c a e-t CAT b-i e-s IS b-b l a c e-k BLACK
where lowercase alphabets are the character targets, and b-/e-

denote special prefixes for word beginning and end. Hence, the
model is trained to first spell the word and then recognize it. In
contrast with a MTL model, the SAR model has a single softmax
over words+characters in the output layer.

4.1. Choice of Character Set

We experimented with two character sets for the SAR model. The
first one is the simple character set consisting of a total of 41 sym-
bols - alphabets a-z, digits 0-9, whitespace , and other punctuations.
The second character set is the one used in [5], and includes separate
character variants depending on position in a word - beginning, mid-
dle, and end. It also includes special symbols for repeated characters,
e.g. a separate symbol for ll. The intuition behind this character set is
that its symbols capture more context as compared to the simple set,
and also disambiguate legitimate character repetitions from double
peaks emitted by the CTC model. We observed that the performance
with the latter character set is slightly better than using simple char-
acters. Hence, we present results only for this case.

4.2. Experiments and Results

We restricted ourselves to the 300-hour set for experiments on the
SAR model because it uses a 10,000 word vocabulary, leading to

a higher OOV rate than the 2000-hour set and also contains several
rare words. We trained a 6-layer BLSTM with joint word and charac-
ter targets after preparing the output training sequences as described
in the previous section. We initialized the SAR BLSTM using the
A2W BLSTM. The training recipe was the same as for the A2W
model presented previously. The SAR model permits three decodes:
• Word: Use only word predictions, similar to the A2W model.
• Characters: Use only character predictions, and combine

them into words using the word-begin characters.
• Switched: Use the character predictions up to the previous

word when the model predicts an “UNK” symbol, and use
the word prediction everywhere else.

Table 4. This table shows performance of the 300-hour SAR model
for three types of decodes.

Decode SWB CH
Word 14.5 23.9
Characters 18.9 30.9
Switched 14.4 24.0

We observe that the SAR model gives comparable performance
to the baseline A2W model, but additionally gives meaningful output
for OOVs, as illustrated by the following test set examples:

REF: SUCH AS LIKE (%HESITATION) THE MURDERING OF A COP OR
HYP: b-s u c e-h SUCH b-a e-s AS b-l i k e-e LIKE b-t h e-e THE b-u e-u
UH b-m u r d e r i n e-g UNK b-o e-f OF b-a A b-s o e-p COP b-o e-r OR

REF: THAT IS RIGHT WE ARE WE ARE FURTHERING HIGHER
HYP: b-t h a e-s THAT’S b-r i g h e-t RIGHT b-r h I RIGHT b-w e ’ r e-e
WE’RE b-w e ’ r e-e WE’RE b-f u r t h e r i n e-g UNK b-h i g h e e-r
HIGHER

REF: BUT SOMETIMES LIKE I JUST HAD TO DO THIS SUMMARY OF
THIS ONE YOU KNOW THESE SCHOLARLY JOURNALS AND STUFF
HYP: b-b u e-t BUT b-s o m e t i m e e-s SOMETIMES b-l i k e-e LIKE b-i I
b-j u s e-t JUST b-h a e-d HAD b-t e-o TO b-d e-o DO b-t h e-e THIS b-s
u mm e r e-y SUMMARY b-t h i e-s THIS b-o n e-e ONE b-y o e-u YOU
b-k n o e-w KNOW b-t h e s e-e THESE b-c o l a r l e-y UNK b-j o u r n a l
e-s UNK b-a n e-d AND b-s t u e-2f STUFF

The words in bold are OOVs. We observe that the SAR model
emits the UNK tag in these cases, but the characters preceding it con-
tain the spelling of the word. In some cases, this spelling is incorrect,
e.g. ”SCHOLARLY→ COLARLY”, but still is more meaningful to
the user than the UNK tag. Future research will try to fix these errors
using data-driven methods.

5. CONCLUSION

Conventional wisdom and prior research suggests that direct acoustic-
to-word (A2W) models require orders of magnitude more data than
sub-word unit-based models to perform competitively. This pa-
per presents a recipe to train an A2W model on the 2000-hour
Switchboard+Fisher data set that performs at-par with several state-
of-the-art hybrid and end-to-end models using sub-word units. We
conclude that data order, model initialization, and regularization
are crucial to obtaining a competitive A2W model with a WER of
8.8%/13.9% on the Switchboard/CallHome subsets of the Hub5-
2000 test set. Next, we present a spell and recognize (SAR) model
that learns to first spell a word and then recognize it. The pro-
posed SAR model gives a rich and readable output to the user while
maintaining the training/decoding simplicity and performance of a
A2W model. We show some examples illustrating the SAR model’s
benefit for utterances containing OOV words.
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